48 resultados para speaker recognition systems
Resumo:
This paper investigates the problem of speaker identi-fication and verification in noisy conditions, assuming that speechsignals are corrupted by environmental noise, but knowledgeabout the noise characteristics is not available. This research ismotivated in part by the potential application of speaker recog-nition technologies on handheld devices or the Internet. Whilethe technologies promise an additional biometric layer of securityto protect the user, the practical implementation of such systemsfaces many challenges. One of these is environmental noise. Due tothe mobile nature of such systems, the noise sources can be highlytime-varying and potentially unknown. This raises the require-ment for noise robustness in the absence of information about thenoise. This paper describes a method that combines multicondi-tion model training and missing-feature theory to model noisewith unknown temporal-spectral characteristics. Multiconditiontraining is conducted using simulated noisy data with limitednoise variation, providing a “coarse” compensation for the noise,and missing-feature theory is applied to refine the compensationby ignoring noise variation outside the given training conditions,thereby reducing the training and testing mismatch. This paperis focused on several issues relating to the implementation of thenew model for real-world applications. These include the gener-ation of multicondition training data to model noisy speech, thecombination of different training data to optimize the recognitionperformance, and the reduction of the model’s complexity. Thenew algorithm was tested using two databases with simulated andrealistic noisy speech data. The first database is a redevelopmentof the TIMIT database by rerecording the data in the presence ofvarious noise types, used to test the model for speaker identifica-tion with a focus on the varieties of noise. The second database isa handheld-device database collected in realistic noisy conditions,used to further validate the model for real-world speaker verifica-tion. The new model is compared to baseline systems and is foundto achieve lower error rates.
Resumo:
Situational awareness is achieved naturally by the human senses of sight and hearing in combination. Automatic scene understanding aims at replicating this human ability using microphones and cameras in cooperation. In this paper, audio and video signals are fused and integrated at different levels of semantic abstractions. We detect and track a speaker who is relatively unconstrained, i.e., free to move indoors within an area larger than the comparable reported work, which is usually limited to round table meetings. The system is relatively simple: consisting of just 4 microphone pairs and a single camera. Results show that the overall multimodal tracker is more reliable than single modality systems, tolerating large occlusions and cross-talk. System evaluation is performed on both single and multi-modality tracking. The performance improvement given by the audio–video integration and fusion is quantified in terms of tracking precision and accuracy as well as speaker diarisation error rate and precision–recall (recognition). Improvements vs. the closest works are evaluated: 56% sound source localisation computational cost over an audio only system, 8% speaker diarisation error rate over an audio only speaker recognition unit and 36% on the precision–recall metric over an audio–video dominant speaker recognition method.
Resumo:
In this paper we present a novel method for performing speaker recognition with very limited training data and in the presence of background noise. Similarity-based speaker recognition is considered so that speaker models can be created with limited training speech data. The proposed similarity is a form of cosine similarity used as a distance measure between speech feature vectors. Each speech frame is modelled using subband features, and into this framework, multicondition training and optimal feature selection are introduced, making the system capable of performing speaker recognition in the presence of realistic, time-varying noise, which is unknown during training. Speaker identi?cation experiments were carried out using the SPIDRE database. The performance of the proposed new system for noise compensation is compared to that of an oracle model; the speaker identi?cation accuracy for clean speech by the new system trained with limited training data is compared to that of a GMM trained with several minutes of speech. Both comparisons have demonstrated the effectiveness of the new model. Finally, experiments were carried out to test the new model for speaker identi?cation given limited training data and with differing levels and types of realistic background noise. The results have demonstrated the robustness of the new system.
Resumo:
In this paper, a novel video-based multimodal biometric verification scheme using the subspace-based low-level feature fusion of face and speech is developed for specific speaker recognition for perceptual human--computer interaction (HCI). In the proposed scheme, human face is tracked and face pose is estimated to weight the detected facelike regions in successive frames, where ill-posed faces and false-positive detections are assigned with lower credit to enhance the accuracy. In the audio modality, mel-frequency cepstral coefficients are extracted for voice-based biometric verification. In the fusion step, features from both modalities are projected into nonlinear Laplacian Eigenmap subspace for multimodal speaker recognition and combined at low level. The proposed approach is tested on the video database of ten human subjects, and the results show that the proposed scheme can attain better accuracy in comparison with the conventional multimodal fusion using latent semantic analysis as well as the single-modality verifications. The experiment on MATLAB shows the potential of the proposed scheme to attain the real-time performance for perceptual HCI applications.
Resumo:
For many applications of emotion recognition, such as virtual agents, the system must select responses while the user is speaking. This requires reliable on-line recognition of the user’s affect. However most emotion recognition systems are based on turnwise processing. We present a novel approach to on-line emotion recognition from speech using Long Short-Term Memory Recurrent Neural Networks. Emotion is recognised frame-wise in a two-dimensional valence-activation continuum. In contrast to current state-of-the-art approaches, recognition is performed on low-level signal frames, similar to those used for speech recognition. No statistical functionals are applied to low-level feature contours. Framing at a higher level is therefore unnecessary and regression outputs can be produced in real-time for every low-level input frame. We also investigate the benefits of including linguistic features on the signal frame level obtained by a keyword spotter.
Resumo:
This paper presents a novel method of audio-visual feature-level fusion for person identification where both the speech and facial modalities may be corrupted, and there is a lack of prior knowledge about the corruption. Furthermore, we assume there are limited amount of training data for each modality (e.g., a short training speech segment and a single training facial image for each person). A new multimodal feature representation and a modified cosine similarity are introduced to combine and compare bimodal features with limited training data, as well as vastly differing data rates and feature sizes. Optimal feature selection and multicondition training are used to reduce the mismatch between training and testing, thereby making the system robust to unknown bimodal corruption. Experiments have been carried out on a bimodal dataset created from the SPIDRE speaker recognition database and AR face recognition database with variable noise corruption of speech and occlusion in the face images. The system's speaker identification performance on the SPIDRE database, and facial identification performance on the AR database, is comparable with the literature. Combining both modalities using the new method of multimodal fusion leads to significantly improved accuracy over the unimodal systems, even when both modalities have been corrupted. The new method also shows improved identification accuracy compared with the bimodal systems based on multicondition model training or missing-feature decoding alone.
Resumo:
A practically viable multi-biometric recognition system should not only be stable, robust and accurate but should also adhere to real-time processing speed and memory constraints. This study proposes a cascaded classifier-based framework for use in biometric recognition systems. The proposed framework utilises a set of weak classifiers to reduce the enrolled users' dataset to a small list of candidate users. This list is then used by a strong classifier set as the final stage of the cascade to formulate the decision. At each stage, the candidate list is generated by a Mahalanobis distance-based match score quality measure. One of the key features of the authors framework is that each classifier in the ensemble can be designed to use a different modality thus providing the advantages of a truly multimodal biometric recognition system. In addition, it is one of the first truly multimodal cascaded classifier-based approaches for biometric recognition. The performance of the proposed system is evaluated both for single and multimodalities to demonstrate the effectiveness of the approach.
Resumo:
Purpose The aim of this paper is to explore the issues involved in developing and applying performance management approaches within a large UK public sector department using a multiple stakeholder perspective and an accompanying theoretical framework. Design/methodology/approach An initial short questionnaire was used to determine perceptions about the implementation and effectiveness of the new performance management system across the organisation. In total, 700 questionnaires were distributed. Running concurrently with an ethnographic approach, and informed by the questionnaire responses, was a series of semi-structured interviews and focus groups. Findings Staff at all levels had an understanding of the new system and perceived it as being beneficial. However, there were concerns that the approach was not continuously managed throughout the year and was in danger of becoming an annual event, rather than an ongoing process. Furthermore, the change process seemed to have advanced without corresponding changes to appraisal and reward and recognition systems. Thus, the business objectives were not aligned with motivating factors within the organisation. Research limitations/implications Additional research to test the validity and usefulness of the theoretical model, as discussed in this paper, would be beneficial. Practical implications The strategic integration of the stakeholder performance measures and scorecards was found to be essential to producing an overall stakeholder-driven strategy within the case study organisation. Originality/value This paper discusses in detail the approach adopted and the progress made by one large UK public sector organisation, as it attempts to develop better relationships with all of its stakeholders and hence improve its performance. This paper provides a concerted attempt to link theory with practice.
Resumo:
For the first time in this paper the authors present results showing the effect of out of plane speaker head pose variation on a lip biometric based speaker verification system. Using appearance DCT based features, they adopt a Mutual Information analysis technique to highlight the class discriminant DCT components most robust to changes in out of plane pose. Experiments are conducted using the initial phase of a new multi view Audio-Visual database designed for research and development of pose-invariant speech and speaker recognition. They show that verification performance can be improved by substituting higher order horizontal DCT components for vertical, particularly in the case of a train/test pose angle mismatch.