1 resultado para spatial clustering algorithms
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aston University Research Archive (45)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (70)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (10)
- Brock University, Canada (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (22)
- Cochin University of Science & Technology (CUSAT), India (4)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (83)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Digital Commons - Michigan Tech (6)
- Digital Commons at Florida International University (3)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (5)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (9)
- Duke University (2)
- Galway Mayo Institute of Technology, Ireland (2)
- Institute of Public Health in Ireland, Ireland (2)
- Instituto Politécnico do Porto, Portugal (60)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Martin Luther Universitat Halle Wittenberg, Germany (12)
- National Center for Biotechnology Information - NCBI (2)
- Open University Netherlands (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (31)
- Repositório da Produção Científica e Intelectual da Unicamp (4)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (29)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (63)
- Scielo Saúde Pública - SP (93)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (12)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (17)
- Universidade Complutense de Madrid (3)
- Universidade do Minho (16)
- Universidade dos Açores - Portugal (7)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (175)
- Université de Montréal, Canada (3)
- University of Queensland eSpace - Australia (106)
- University of Southampton, United Kingdom (1)
- WestminsterResearch - UK (1)
Resumo:
This papers examines the use of trajectory distance measures and clustering techniques to define normal
and abnormal trajectories in the context of pedestrian tracking in public spaces. In order to detect abnormal
trajectories, what is meant by a normal trajectory in a given scene is firstly defined. Then every trajectory
that deviates from this normality is classified as abnormal. By combining Dynamic Time Warping and a
modified K-Means algorithms for arbitrary-length data series, we have developed an algorithm for trajectory
clustering and abnormality detection. The final system performs with an overall accuracy of 83% and 75%
when tested in two different standard datasets.