62 resultados para space-to-time conversion
Resumo:
With the advent of 'ancient DNA' studies on preserved material of extant and extinct species, museums and herbaria now represent an important although still underutilized resource in molecular ecology. The ability to obtain sequence data from archived specimens can reveal the recent history of cryptic species and introductions. We have analysed extant and herbarium samples of the highly invasive green alga Codium fragile, many over 100 years old, to identify cryptic accessions of the invasive strain known as C. fragile ssp. tomentosoides, which can be identified by a unique haplotype. Molecular characterization of specimens previously identified as native in various regions shows that the invasive tomentosoides strain has been colonizing new habitats across the world for longer than records indicate, in some cases nearly 100 years before it was noticed. It can now be found in the ranges of all the other native haplotypes detected, several of which correspond to recognized subspecies. Within regions in the southern hemisphere there was a greater diversity of haplotypes than in the northern hemisphere, probably as a result of dispersal by the Antarctic Circumpolar Current. The findings of this study highlight the importance of herbaria in preserving contemporaneous records of invasions as they occur, especially when invasive taxa are cryptic.
Resumo:
Gas temperature is of major importance in plasma based surface treatment, since the surface processes are strongly temperature sensitive. The spatial distribution of reactive species responsible for surface modification is also influenced by the gas temperature. Industrial applications of RF plasma reactors require a high degree of homogeneity of the plasma in contact with the substrate. Reliable measurements of spatially resolved gas temperatures are, therefore, of great importance. The gas temperature can be obtained, e.g. by optical emission spectroscopy (OES). Common methods of OES to obtain gas temperatures from analysis of rotational distributions in excited states do not include the population dynamics influenced by cascading processes from higher electronic states. A model was developed to evaluate this effect on the apparent rotational temperature that is observed. Phase resolved OES confirmed the validity of this model. It was found that cascading leads to higher apparent temperatures, but the deviation (similar or equal to 25 K) is relatively small and can be ignored in most cases. This analysis is applied to investigate axially and radially resolved temperature profiles in an inductively coupled hydrogen RF discharge.
Resumo:
In this letter, we propose a simple space-time code to simultaneously achieve both the space and time diversities over time dispersive channels by using two-dimensional lattice constellations and Alamouti codes. The proposed scheme still reserves full space diversity and double-real-symbols joint maximum likelihood decoding which has the similar computation complexity as the Alamouti code.
Resumo:
Background: Although mortality and health inequalities at birth have increased both geographically and in socioeconomic terms, little is known about inequalities at age 85, the fastest growing sector of the population in Great Britain (GB).
Aim: To determine whether trends and drivers of inequalities in life expectancy (LE) and disability-free life expectancy (DFLE) at age 85 between 1991 and 2001 are the same as those at birth.
Methods: DFLE at birth and age 85 for 1991 and 2001 by gender were calculated for each local authority in GB using the Sullivan method. Regression modelling was used to identify area characteristics (rurality, deprivation, social class composition, ethnicity, unemployment, retirement migration) that could explain inequalities in LE and DFLE.
Results: Similar to values at birth, LE and DFLE at age 85 both increased between 1991 and 2001 (though DFLE increased less than LE) and gaps across local areas widened (and more for DFLE than LE). The significantly greater increases in LE and DFLE at birth for less-deprived compared with more-deprived areas were still partly present at age 85. Considering all factors, inequalities in DFLE at birth were largely driven by social class composition and unemployment rate, but these associations appear to be less influential at age 85.
Conclusions: Inequalities between areas in LE and DFLE at birth and age 85 have increased over time though factors explaining inequalities at birth (mainly social class and unemployment rates) appear less important for inequalities at age 85.
Resumo:
This paper proposes a non-linear adaptive algorithm, the amplitude banded RLS (ABRLS) algorithm, as an adaptation procedure for time variant channel equalizers. In the ABRLS algorithm, a coefficient matrix is updated based on the amplitude level of the received sequence. To enhance the capability of tracking for the ABRLS algorithm, a parallel adaptation scheme is utilized which involves the structures of decision feedback equalizer (DFE). Computer simulations demonstrate that the novel ABRLS based equalizer provides a significant improvement relative to the conventional RLS DFE on a rapidly time variant communication channel.
Resumo:
In a recent paper (Automatica 49 (2013) 2860–2866), the Wirtinger-based inequality has been introduced to derive tractable stability conditions for time-delay or sampled-data systems. We point out that there exist two errors in Theorem 8 for the stability analysis of sampled-data systems, and the correct theorem is presented.
Resumo:
Accurately encoding the duration and temporal order of events is essential for survival and important to everyday activities, from holding conversations to driving in fast flowing traffic. Although there is a growing body of evidence that the timing of brief events (< 1s) is encoded by modality-specific mechanisms, it is not clear how such mechanisms register event duration. One approach gaining traction is a channel-based model; this envisages narrowly-tuned, overlapping timing mechanisms that respond preferentially to different durations. The channel-based model predicts that adapting to a given event duration will result in overestimating and underestimating the duration of longer and shorter events, respectively. We tested the model by having observers judge the duration of a brief (600ms) visual test stimulus following adaptation to longer (860ms) and shorter (340ms) stimulus durations. The channel-based model predicts perceived duration compression of the test stimulus in the former condition and perceived duration expansion in the latter condition. Duration compression occurred in both conditions, suggesting that the channel-based model does not adequately account for perceived duration of visual events.
Resumo:
Energy release from radioactive decays contributes significantly to supernova light curves. Previous works, which considered the energy deposited by ?-rays and positrons produced by Ni, Co, Ni, Co, Ti and Sc, have been quite successful in explaining the light curves of both core collapse and thermonuclear supernovae. We point out that Auger and internal conversion electrons, together with the associated X-ray cascade, constitute an additional heat source. When a supernova is transparent to ?-rays, these electrons can contribute significantly to light curves for reasonable nucleosynthetic yields. In particular, the electrons emitted in the decay of Co, which are largely due to internal conversion from a fortuitously low-lying 3/2 state in the daughter Fe, constitute an additional significant energy-deposition channel. We show that when the heating by these electrons is accounted for, a slow-down in the light curve of SN 1998bw is naturally obtained for typical hypernova nucleosynthetic yields. Additionally, we show that for generic Type Ia supernova yields, the Auger electrons emitted in the ground-state to ground-state electron capture decay of Fe exceed the energy released by the Ti decay chain for many years after the explosion. © 2009 RAS.
Resumo:
Two experiments were conducted to examine the ‘long-term’ effect of feed space allowance and period of access to feed on dairy cow performance. In Experiment 1, three horizontal feed space allowances (20, 40 and 60 cm cow−1) were examined over a 127-d period (14 cows per treatment). In Experiment 2, 48 dairy cows were used in a continuous design (10-week duration) 2 × 2 factorial design experiment comprising two horizontal feed space allowances (15 and 40 cm cow−1), and two periods of access to feed (unrestricted and restricted). With the former, uneaten feed was removed at 08·00 h, while feeding took place at 09·00 h. With the latter, uneaten feed was removed at 06·00 h, while feeding was delayed until 12·00 h. Mean total dry-matter (DM) intakes were 19·0, 18·7 and 19·3 kg cow−1 d−1 with the 20, 40 and 60 cm cow−1 treatments in Experiment 1, and 18·1 and 18·2 kg cow−1 d−1 with the ‘restricted feeding time’ treatments, and 17·8 and 18·1 kg d−1 with the ‘unrestricted feeding time’ treatments (15 and 40 cm respectively) in Experiment 2. None of milk yield, milk composition, or end-of-study live weight or condition score were significantly affected by treatment in either experiment (P > 0·05), while fat + protein yield was reduced with the 15-cm treatment in Experiment 2 (P < 0·05). When access to feed was restricted by space or time constraints, cows modified their time budgets and increased their rates of intake.
Resumo:
In this work we present the theoretical framework for the solution of the time-dependent Schrödinger equation (TDSE) of atomic and molecular systems under strong electromagnetic fields with the configuration space of the electron’s coordinates separated over two regions; that is, regions I and II. In region I the solution of the TDSE is obtained by an R-matrix basis set representation of the time-dependent wave function. In region II a grid representation of the wave function is considered and propagation in space and time is obtained through the finite-difference method. With this, a combination of basis set and grid methods is put forward for tackling multiregion time-dependent problems. In both regions, a high-order explicit scheme is employed for the time propagation. While, in a purely hydrogenic system no approximation is involved due to this separation, in multielectron systems the validity and the usefulness of the present method relies on the basic assumption of R-matrix theory, namely, that beyond a certain distance (encompassing region I) a single ejected electron is distinguishable from the other electrons of the multielectron system and evolves there (region II) effectively as a one-electron system. The method is developed in detail for single active electron systems and applied to the exemplar case of the hydrogen atom in an intense laser field.
Resumo:
For the first time, the technique of point projection absorption spectroscopy - which uses an intense, point source of X-rays to project and spectrally disperse an image of a plasma onto a detector- has been shown to be applicable to the study of expanding aluminium plasmas generated by approximately 80ps (2-omega) laser pulses. Massive, stripe targets of approximately 125-mu-m width and wire targets of 25-mu-m diameter have been studied. Using a PET Bragg crystal as the dispersive element, a resolving power of approximately 3500 was achieved with spatial resolution at the 5-mu-m level in frame times of the order of 80ps. Reduction of the data for times up to 150ps after the peak of the incident laser pulse produced estimates of the temperature and densities present, as a function of space and time.
Resumo:
Activation of methane with a halogen followed by the metathesis of methyl halide is a novel route from methane to higher hydrocarbons or oxygenates. Thermodynamic analysis revealed that bromine is the most suitable halogen for this goal. Analysis of the published data on the reaction kinetics in a CSTR enabled us to judge on the effects of temperature, reactor residence time and the feed concentrations of bromine and methane to the conversion of methane and the selectivity towards mono or dibromomethane. The analysis indicated that high dibromomethane selectivity is attainable (over 90%) accompanied by high methane conversions. The metathesis of dibromomethane can provide an alternative route to the conversion of methane (natural gas) economically with smaller installations than the current syn-gas route. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Prediction of biotic responses to future climate change in tropical Africa tends to be based on two modelling approaches: bioclimatic species envelope models and dynamic vegetation models. Another complementary but underused approach is to examine biotic responses to similar climatic changes in the past as evidenced in fossil and historical records. This paper reviews these records and highlights the information that they provide in terms of understanding the local- and regional-scale responses of African vegetation to future climate change. A key point that emerges is that a move to warmer and wetter conditions in the past resulted in a large increase in biomass and a range distribution of woody plants up to 400–500 km north of its present location, the so-called greening of the Sahara. By contrast, a transition to warmer and drier conditions resulted in a reduction in woody vegetation in many regions and an increase in grass/savanna-dominated landscapes. The rapid rate of climate warming coming into the current interglacial resulted in a dramatic increase in community turnover, but there is little evidence for widespread extinctions. However, huge variation in biotic response in both space and time is apparent with, in some cases, totally different responses to the same climatic driver. This highlights the importance of local features such as soils, topography and also internal biotic factors in determining responses and resilience of the African biota to climate change, information that is difficult to obtain from modelling but is abundant in palaeoecological records.