16 resultados para soil moisture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nutrient loss from agricultural land following organic fertilizer spreading can lead to eutrophication and poor water quality. The risk of pollution is partly related to the soil water status during and after spreading. In response to these issues, a decision support system (DSS) for nutrient management has been developed to predict when soil and weather conditions are suitable for slurry spreading. At the core of the DSS, the Hybrid Soil Moisture Deficit (HSMD) model estimates soil water status relative to field capacity (FC) for three soil classes (well, moderately and poorly drained) and has potential to predict the occurrence of a transport vector when the soil is wetter than FC. Three years of field observation of volumetric water content was used to validate HSMD model predictions of water status and to ensure correct use and interpretation of the drainage classes. Point HSMD model predictions were validated with respect to the temporal and spatial variations in volumetric water content and soil strength properties. It was found that the HSMD model predictions were well related to topsoil water content through time, but a new class intermediate between poor and moderate, perhaps ‘imperfectly drained’, was needed. With correct allocations of a field into a drainage class, the HSMD model predictions reflect field scale trends in water status and therefore the model is suitable for use at the core of a DSS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A detailed understanding of flow and contaminant transfer along each of the key hydrological pathways within a catchment is critical for designing and implementing cost effective Programmes of Measures under the Water
Framework Directive.
The Contaminant Movement along Pathways Project (’The Pathways Project’) is an Irish, EPA STRIVE funded, large multi-disciplinary project which is focussed on understanding and modelling flow and attenuation along each of these pathways for the purposes of developing a catchment management tool. The tool will be used by EPA and RBD catchment managers to assess and manage the impacts of diffuse contamination on stream aquatic ecology. Four main contaminants of interest — nitrogen, phosphorus, sediment and pathogens — are being
investigated in four instrumented test catchments. In addition to the usual hydrological and water chemistry/quality parameters typically captured in catchment studies, field measurements at the test catchments include ecological
sampling, sediment dynamics, soil moisture dynamics, and groundwater levels and chemistry/quality, both during and between significant rainfall events. Spatial and temporal sampling of waters directly from the pathways of
interest is also being carried out.
Sixty-five percent of Ireland is underlain by poorly productive aquifers. In these hydrogeological settings, the main pathways delivering flow to streams are overland flow, interflow and shallow bedrock flow. Little is
known about the interflow pathway and its relative importance in delivery of flow and contaminants to the streams. Interflow can occur in both the topsoil and subsoil, and may include unsaturated matrix flow, bypass or macropore
flow, saturated flow in locally perched water tables and artificial field drainage.
Results to date from the test catchment experiments show that artificial field drains play an important role in the delivery of interflow to these streams, during and between rainfall events when antecedent conditions are
favourable. Hydrochemical mixing models, using silica and SAC254 (the absorbance of UV light at a wavelength of 254 nm which is a proxy for dissolved organic matter) as tracers, show that drain flow is an important end
member contributing to the stream and that proportionally, its contribution is relatively high.
Results from the study also demonstrate that waters originating from one pathway often mix with the waters from another, and are subsequently delivered to the stream at rates, and with chemical/quality characteristics,
that are not typical of either pathway. For example, pre-event shallow groundwater not far from the catchment divide comes up to the surface as rejected recharge during rainfall events and is rapidly delivered to the stream
via overland flow and/or artificial land drainage, bringing with it higher nitrate than would often be expected from a quickflow pathway contribution. This is contrary to the assumption often made in catchment studies that the
deeper hydrological pathways have slower response times in stream hydrographs during a rainfall event, and it emphasizes that it is critical to have a strong three-dimensional conceptual model as the basis for the interpretation
of catchment data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Questions: 1. Indicator values, such as those of Ellenberg, for different environmental factors are seen as independent. We tested for the presence of interactions between environmental factors ( soil moisture and reaction) to see if this assumption is simplistic. 2. How close are Ellenberg indicator values (IVs) related to the observed optima of species response curves in an area peripheral to those where they have been previously employed and 3. Can the inclusion of bryophytes add to the utility of IVs?

Location: South Uist, Outer Hebrides, Scotland, UK.

Methods: Two grids (ca. 2000 m x 2000 m) were sampled at 50-m intervals across the transition from machair to upland communities covering an orthogonal gradient of both soil pH ( reaction) and soil moisture content. Percentage cover data for vascular plants, bryophytes and lichens were recorded, along with pH and moisture content of the underlying sand/soil/peat. Reaction optima, derived from species response curves calculated using HOF models, were compared between wet and dry sites, and moisture optima between acidic and basic samples. Optima for the whole data set were compared to Ellenberg IVs to assess their performance in this area, with and without the inclusion of bryophytes.

Results: A number of species showed substantially different pH optima at high and low soil moisture contents (18% of those tested) and different soil moisture optima at high and low pH (49%). For a number of species the IVs were poor predictors of their actual distribution across the sampled area. Bryophytes were poor at explaining local variation in the environmental factors and also their inclusion with vascular plants negatively affected the strength of relationships.

Conclusions: A substantial number of species showed an interaction between soil moisture and reaction in determining their optima on the two respective gradients. It should be borne in mind that IVs such as Ellenberg's may not be independent of one another.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil fauna in the extreme conditions of Antarctica consists of a few microinvertebrate species patchily distributed at different spatial scales. Populations of the prostigmatic mite Stereotydeus belli and the collembolan Gressittacantha terranova from northern Victoria Land (Antarctica) were used as models to study the effect of soil properties on microarthropod distributions. In agreement with the general assumption that the development and distribution of life in these ecosystems is mainly controlled by abiotic factors, we found that the probability of occurrence of S. belli depends on soil moisture and texture and on the sampling period (which affects the general availability of water); surprisingly, none of the analysed variables were significantly related to the G. terranova distribution. Based on our results and literature data, we propose a theoretical model that introduces biotic interactions among the major factors driving the local distribution of collembolans in Antarctic terrestrial ecosystems. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The application of slurry nutrients to land can be associated with unintended losses to the environment depending on soil and weather conditions. Correct timing of slurry application, however, can increase plant nutrient uptake and reduce losses. A decision support system (DSS), which predicts optimum conditions for slurry spreading based on the Hybrid Soil Moisture Deficit (HSMD) model, was investigated for use as a policy tool. The DSS recommendations were compared to farmer perception of suitable conditions for slurry spreading for three soil drainage classes (well, moderate and poorly drained) to better understand on farm slurry management practices and to identify potential conflict with farmer opinion. Six farmers participated in a survey over two and a half years, during which they completed a daily diary, and their responses were compared to Soil Moisture Deficit (SMD) calculations and weather data recorded by on farm meteorological stations. The perception of land drainage quality differed between farmers and was related to their local knowledge and experience. It was found that the allocation of grass fields to HSMD drainage classes using a visual assessment method aligned farmer perception of drainage at the national scale. Farmer opinion corresponded to the theoretical understanding that slurry should not be applied when the soil is wetter than field capacity, i.e. when drainage can occur. While weather and soil conditions (especially trafficability) were the principal reasons given by farmers not to spread slurry, farm management practices (grazing and silage) and current Nitrates Directive policies (closed winter period for spreading) combined with limited storage capacities were obstacles to utilisation of slurry nutrients. Despite the slightly more restrictive advice of the DSS regarding the number of suitable spreading opportunities, the system has potential to address an information deficit that would help farmers to reduce nutrient losses and optimise plant nutrient uptake by improved slurry management. The DSS advice was in general agreement with the farmers and, therefore, they should not be resistant to adopting the tool for day to day management.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thousands of Neolithic and Bronze Age open-air rock art panels exist across the countryside in northern England. However, desecration, pollution, and other factors are threatening the survival of these iconic stone monuments. Evidence suggest that rates of panel deterioration may be increasing, although it is not clear whether this is due to local factors or wider environmental influences accelerated by environmental change. To examine this question, 18 rock art panels with varied art motifs were studied at two major panel locations at Lordenshaw and Weetwood Moor in Northumberland. A condition assessment
tool was used to first quantify the level of deterioration of each panel (called “staging”). Stage estimates then were compared statistically with 27 geochemical and physical descriptors of local environments, such as soil moisture, salinity, pH, lichen coverage, soil anions and cation levels, and panel orientation, slope, and standing height. In parallel, climate modelling was performed using UKCP09 to assess how projected climatic conditions (to 2099) might affect the environmental descriptors most correlated with elevated stone deterioration. Only two descriptors significantly correlated (P < 0.05) with increased stage: the standing height of the panel and the exchangeable cation content of the local soils, although moisture conditions also were potentially influential at some panels. Climate modelling predicts warming temperatures, more seasonally variable precipitation, and increased wind speeds, which hint stone deterioration could accelerate in the future due to increased physiochemical weathering. We recommend key panels be targeted for immediate management intervention, focusing on reducing wind exposures, improving site drainage, and potentially immobilizing soil salts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hulun Lake, China's fifth-largest inland lake, experienced severe declines in water level in the period of 2000-2010. This has prompted concerns whether the lake is drying up gradually. A multi-million US dollar engineering project to construct a water channel to transfer part of the river flow from a nearby river to maintain the water level was completed in August 2010. This study aimed to advance the understanding of the key processes controlling the lake water level variation over the last five decades, as well as investigate the impact of the river transfer engineering project on the water level. A water balance model was developed to investigate the lake water level variations over the last five decades, using hydrological and climatic data as well as satellite-based measurements and results from land surface modelling. The investigation reveals that the severe reduction of river discharge (-364±64 mm/yr, ∼70% of the five-decade average) into the lake was the key factor behind the decline of the lake water level between 2000 and 2010. The decline of river discharge was due to the reduction of total runoff from the lake watershed. This was a result of the reduction of soil moisture due to the decrease of precipitation (-49±45 mm/yr) over this period. The water budget calculation suggests that the groundwater component from the surrounding lake area as well as surface run off from the un-gauged area surrounding the lake contributed ∼ net 210 Mm3/yr (equivalent to ∼ 100 mm/yr) water inflows into the lake. The results also show that the water diversion project did prevent a further water level decline of over 0.5 m by the end of 2012. Overall, the monthly water balance model gave an excellent prediction of the lake water level fluctuation over the last five decades and can be a useful tool to manage lake water resources in the future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spatial location of microorganisms in the soil three-dimensional structure with respect to their substrates plays an important role in the persistence and turnover of natural and xenobiotic organic compounds. To study the effect of spatial location on the mineralisation of 14C-2,4-dichlorophenol (2,4-DCP, 0.15 or 0.31 μmol g-1) and 14C-glucose (2.77 μmol g-1), columns packed with autoclaved soil aggregates (2-5 mm) were used. Using a chloride tracer of water movement, the existence of 'immobile' water, which was by-passed by preferentially flowing 'mobile' water, was demonstrated. By manipulation of the soil moisture content, the substrates were putatively placed to these conceptual hydrological domains (immobile and mobile water). Leaching studies revealed that approximately 1.7 (glucose) and 3.4 (2.4-DCP) times the amount of substrate placed in mobile water was recovered in the first 4 fractions of leachate when compared to substrate placed in immobile water. The marked difference in the breakthrough curves was taken as evidence of successful substrate placement. The 2,4-DCP degrading bacterium, Burkholderia sp. RASCc2, was inoculated in mobile water (1.8-5.2 × 107 cells g-1 soil) and parameters (asymptote, time at maximum rate, calculated maximum rate) describing the mineralisation kinetics of 2,4-DCP and glucose previously added to immobile or mobile water domains were compared, For glucose, there was no significant effect (P > 0.1) of substrate placement on any of the mineralisation parameters. However, substrate placement had a significant effect (P < 0.05) on parameters describing 2,4-DCP mineralisation. In particular, 2,4-DCP added in mobile water was mineralised with a greater maximum rate and with a reduced time at maximum rate when compared to 2,4-DCP added to immobile water. The difference in response between the two test substrates may reflect the importance of sorption in controlling the spatial bioavailability of compounds in soil. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Antrim Coast Road stretching from the seaport of Larne in the East of Northern Ireland to the famous Giant’s Causeway in the North has a well-deserved reputation for being one of the most spectacular roads in Europe (Day, 2006). At various locations along the route, fluid interactions between the problematic geology, Jurassic Lias Clay and Triassic Mudstone overlain by Cretaceous Limestone and Tertiary Basalt, and environmental variables result in frequent instances of slope instability within the vadose zone. During such instances of instability, debris flows and composite mudflows encroach on the carriageway posing a hazard to road users. This paper examines the site investigative, geotechnical and spatial analysis techniques currently being implemented to monitor slope stability for one site at Straidkilly Point, Glenarm, Northern Ireland. An in-depth understanding of the geology was obtained via boreholes, resistivity surveys and laboratory testing. Environmental variables recorded by an on-site weather station were correlated with measured pore water pressure and soil moisture infiltration dynamic data.
Terrestrial LiDAR (TLS) was applied to the slope for the monitoring of failures, with surveys carried out on a bi-monthly basis. TLS monitoring allowed for the generation of Digital Elevation Models (DEMs) of difference, highlighting areas of recent movement, erosion and deposition. Morphology parameters were generated from the DEMs and include slope, curvature and multiple measures of roughness. Changes in the structure of the slope coupled with morphological parameters are characterised and linked to progressive failures from the temporal monitoring. In addition to TLS monitoring, Aerial LiDARi datasets were used for the spatio-morphological characterisation of the slope on a macro scale. Results from the geotechnical and environmental monitoring were compared with spatial data obtained through Terrestrial and Airborne LiDAR, providing a multi-faceted approach to slope stability characterization, which facilitates more informed management of geotechnical risk by the Northern Ireland Roads Service.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Landslides and debris flows, commonly triggered by rainfall, pose a geotechnical risk causing disruption to transport routes and incur significant financial expenditure. With infrastructure maintenance budgets becoming ever more constrained, this paper provides an overview of some of the developing methods being implemented by Queen’s University, Belfast in collaboration with the Department for Regional Development to monitor the stability of two distinctly different infrastructure slopes in Northern Ireland. In addition to the traditional, intrusive ground investigative and laboratory testing methods, aerial LiDAR, terrestrial LiDAR, geophysical techniques and differential Global Positioning Systems have been used to monitor slope stability. Finally, a comparison between terrestrial LiDAR, pore water pressure and soil moisture deficit (SMD) is presented to outline the processes for a more informed management regime and to highlight the season relationship between landslide activity and the aforementioned parameters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Antrim Coast Road stretching from the seaport of Larne in the East of Northern Ireland has a well-deserved reputation for being one of the most spectacular roads in Europe (Day, 2006). However the problematic geology; Jurassic Lias Clay and Triassic Mudstone overlain by Cretaceous Limestone and Tertiary Basalt, and environmental variables result in frequent instances of slope instability manifested in both shallow debris flows and occasional massive rotational movements, creating a geotechnical risk to this highway. This paper describes how a variety of techniques are being used to both assess instability and monitor movement of these active slopes near one site at Straidkilly Point, Glenarm. An in-depth understanding of the geology was obtained via boreholes, resistivity surveys and laboratory testing. Environmental variables recorded by an on-site weather station were correlated with measured pore water pressure and soil moisture infiltration data. Terrestrial LiDAR (TLS), with surveys carried out on a bi-monthly basis allowed for the generation of Digital Elevation Models (DEMs) of difference, highlighting areas of recent movement, accumulation and depletion. Morphology parameters were generated from the DEMs and include slope, curvature and multiple measures of roughness. Changes in the structure of the slope coupled with morphological parameters were characterised and linked to progressive failures from the temporal monitoring. In addition to TLS monitoring, Aerial LiDAR datasets were used for the spatio-morphological characterisation of the slope on a macro scale. A Differential Global Positioning System (dGPS) was also deployed on site to provide a real-time warning system for gross movements, which were also correlated with environmental conditions. Frequent electrical resistivity tomography (ERT) surveys were also implemented to provide a better understanding of long-term changes in soil moisture and help to define the complex geology. The paper describes how the data obtained via a diverse range of methods has been combined to facilitate a more informed management regime of geotechnical risk by the Northern Ireland Roads Service.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Terrestrial gastropods are both herbivores and detritivores, but the ratio between these two modes of feeding can be highly variable over time. While previous studies have examined long-term seasonal patterns in the consumption of fresh material, mechanisms explaining short-term variation in dietary preferences have not been explored. We used faecal analysis to determine how short-term variation in weather affects the ratio of herbivory to detritivory in the land snail Cepaea nemoralis. Averaged across sampling dates, c. 9% of the faeces were composed of fresh plant material, with the remainder consisting of plant litter and soil. Temperature, relative humidity and soil moisture did not affect the proportional consumption of fresh material; however, snails consumed more soil with increasing temperature. If there had not been a recent precipitation event, the mean proportion of fresh material in the faeces more than doubled on average; however, this increase only occurred in areas of low herbaceous cover. Our results suggest that an increased proportion of snails consume fresh material during dry periods to compensate for water losses. Moreover, our study highlights that studies of dietary composition in the field need to account for short-term variation in feeding
preferences caused by weather.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study applies spatial statistical techniques including cokriging to integrate airborne geophysical (radiometric) data with ground-based measurements of peat depth and soil organic carbon (SOC) to monitor change in peat cover for carbon stock calculations. The research is part of the EU funded Tellus Border project and is supported by the INTERREG IVA development programme of the European Regional Development Fund, which is managed by the Special EU Programmes Body (SEUPB). The premise is that saturated peat attenuates the radiometric signal from underlying soils and rocks. Contemporaneous ground-based measurements were collected to corroborate mapped estimates and develop a statistical model for volumetric carbon content (VCC) to 0.5 metres. Field measurements included ground penetrating radar, gamma ray spectrometry and a soil sampling methodology which measured bulk density and soil moisture to determine VCC. One aim of the study was to explore whether airborne radiometric survey data can be used to establish VCC across a region. To account for the footprint of airborne radiometric data, five cores were obtained at each soil sampling location: one at the centre of the ground radiometric equivalent sample location and one at each of the four corners 20 metres apart. This soil sampling strategy replicated the methodology deployed for the Tellus Border geochemistry survey. Two key issues will be discussed from this work. The first addresses the integration of different sampling supports for airborne and ground measured data and the second discusses the compositional nature of the VOC data.