116 resultados para soil dissolved C pool
Resumo:
Understanding the response of humid mid-latitude forests to changes in precipitation, temperature, nutrient cycling, and disturbance is critical to improving our predictive understanding of changes in the surface-subsurface energy balance due to climate change. Mechanistic understanding of the effects of long-term and transient moisture conditions are needed to quantify
linkages between changing redox conditions, microbial activity, and soil mineral and nutrient interactions on C cycling and greenhouse gas releases. To illuminate relationships between the soil chemistry, microbial communities and organic C we established transects across hydraulic and topographic gradients in a small watershed with transient moisture conditions. Valley bottoms tend to be more frequently saturated than ridge tops and side slopes which generally are only saturated when shallow storm flow zones are active. Fifty shallow (~36”) soil cores were collected during timeframes representative of low CO2, soil winter conditions and high CO2, soil summer conditions. Cores were subdivided into 240 samples based on pedology and analyses of the geochemical (moisture content, metals, pH, Fe species, N, C, CEC, AEC) and microbial (16S rRNA gene
amplification with Illumina MiSeq sequencing) characteristics were conducted and correlated to watershed terrain and hydrology. To associate microbial metabolic activity with greenhouse gas emissions we installed 17 soil gas probes, collected gas samples for 16 months and analyzed them for CO2 and other fixed and greenhouse gasses. Parallel to the experimental efforts our data is being used to support hydrobiogeochemical process modeling by coupling the Community Land Model (CLM) with a subsurface process model (PFLOTRAN) to simulate processes and interactions from the molecular to watershed scales. Including above ground processes (biogeophysics, hydrology, and vegetation dynamics), CLM provides mechanistic water, energy, and organic matter inputs to the surface/subsurface models, in which coupled biogeochemical reaction
networks are used to improve the representation of below-ground processes. Preliminary results suggest that inclusion of above ground processes from CLM greatly improves the prediction of moisture response and water cycle at the watershed scale.
Resumo:
An increasing number of empirical studies are challenging the central fundamentals on which the classical soil food web model is built. This model assumes that bacteria consume labile substrates twice as fast as fungi, and that mycorrhizal fungi do not decompose organic matter. Here, we build on emerging evidence that points to significant consumption of labile C by fungi, and to the ability of ectomycorrhizal fungi to decompose organic matter, to show that labile C constitutes a major and presently underrated source of C for the soil food web. We use a simple model describing the dynamics of a recalcitrant and a labile C pool and their consumption by fungi and bacteria to show that fungal and bacterial populations can coexist in a stable state with large inputs into the labile C pool and a high fungal use of labile C. We propose a new conceptual model for the bottom trophic level of the soil food web, with organic C consisting of a continuous pool rather than two or three distinct pools, and saprotrophic fungi using substantial amounts of labile C. Incorporation of these concepts will increase our understanding of soil food web dynamics and functioning under changing conditions.
Resumo:
The soil carbon (C) stock of the Republic of Ireland is estimated to have been 2048 Mt in 1990 and 2021 Mt in 2000. Peat holds around 53% of the soil C stock, but on 17% of the land area. The C density of soils (t C ha-1) is mapped at 2 km*2 km resolution. The greatest soil C densities occur where deep raised bogs are the dominant soil; in these grid squares C density can reach 3000 t C ha-1. Most of the loss of soil C between 1990 and 2000-up to 23 Mt C (1% of 1990 soil C stock)-was through industrial peat extraction. The average annual change in soil C stocks from 1990 to 2000 due to land use change was estimated at around 0.02% of the 1990 stock. Considering uncertainties in the data used to calculate soil C stocks and changes, the small average annual 'loss' could be regarded as 'no change'.
Resumo:
Sequestration of CO2 via biological sinks is a matter of great scientific importance due to the potential lowering of atmospheric CO2. In this study, a custom built incubation chamber was used to cultivate a soil microbial community to instigate chemoautotrophy of a temperate soil. Real-time atmospheric CO2 concentrations were monitored and estimations of total CO2 uptake were made. After careful background flux corrections, 4.52 +/- 0.05 g CO2 kg I dry soil was sequestered from the chamber atmosphere over 40 h. Using isotopically labelled (CO2)-C-13 and GCMS-IRMS, labelled fatty acids were identified after only a short incubation, hence confirming CO2 sequestration for soil. The results of this in vivo study provide the ground work for future studies intending to mimic the in situ environment by providing a reliable method for investigating CO2 uptake by soil microorganisms.(C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Soil aggregation is a principal ecosystem process mediated by soil biota. Collembola and arbuscular mycorrhizal (AM) fungi are important groups in the soil, and can interact in various ways. Few studies have examined collembola effects on soil aggregation, while many have quantified AM effects. Here, we asked if collembola have any effect on soil aggregation, and if they alter AM fungi-mediated effects on soil aggregation.
We carried out a factorial greenhouse study, manipulating the presence of both collembola and AM fungi, using two different plant species, Sorghum vulgare and Daucus carota. We measured root length and biomass, AMF (and non-AMF) soil hyphal length, root colonization, and collembolan populations, and quantified water stable soil aggregates (WSA) in four size classes.
Soil exposed to growth of AMF hyphae and collembola individually had higher WSA than control treatments. Moreover, the interaction effects between AMF and collembola were significant, with nonadditive increases in the combined application compared to the single treatments.
Our findings show that collembola can play a crucial role in maintaining ecological sustainability through promoting soil aggregation, and point to the importance of considering organism interactions in understanding formation of soil structure. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Animal communities are sensitive to environmental disturbance, and several multivariate methods have recently been developed to detect changes in community structure. The complex taxonomy of soil invertebrates constrains the use of the community level in monitoring environmental changes, since species identification requires expertise and time. However, recent literature data on marine communities indicate that little multivariate information is lost in the taxonomic aggregation of species data to high rank taxa. In the present paper, this hypothesis was tested on two oribatid mite (oribatida, Acari) assemblages under two different kinds of disturbance: metal pollution and fires. Results indicate that data sets built at the genus and family systematic rank can detect the effects of disturbance with little loss of information. This is an encouraging result in view of the use of the community level as a preliminary tool for describing patterns of human-disturbed soil ecosystems. (c) 2006 Elsevier SAS. All rights reserved.
Magnitude, form and bioavailability of fluvial carbon exports from Irish organic soils under pasture
Resumo:
Organic soils are widespread in Ireland and vulnerable to degradation via drainage for agriculture. The soil-landuse combination of pasture on organic soils may play a disproportionate role in regional C dynamics but is yet to receive study. Fluvial C fluxes and labile organic fractions were determined for two such sites at nested field (c.4 ha) and subcatchment scales (>40 ha); one relatively dry and nutrient rich, the other wetter and nutrient poor. Field scale flux from the nutrient poor site over 2 years was 38.9 ± 6.6 g C m−2 yr−1 with DIC > DOC > POC at 57, 32 and 11 % respectively, and 72 % DIC was comprised of above equilibrium CO2. At the nutrient rich site, which overlies limestone geology, field scale export over an individual year was 90.4 g C m−2 with DIC > DOC > POC at 49, 42 and 9 %, but with 90 % DIC as bicarbonate. By comparison with the nutrient poor site, the magnitude and composition of inorganic C exports from the nutrient rich site implied considerable export of soil-respiratory C as bicarbonate, and lower evasion losses due to carbonate system buffering. Labile DOC determined using dark incubations indicated small fractions (5–10 %) available for remineralisation over typical downstream transit times of days to weeks. These fractions are probably conservative as photolysis in the environment can increase the proportion of labile compounds via photocleavage and directly remineralise organic matter. This study demonstrates that monitoring at soil–water interfaces can aid capture of total landscape fluvial fluxes by precluding the need to incorporate prior C evasion, although rapid runoff responses at field scales can necessitate high resolution flow proportional, and hydrograph sampling to constrain uncertainty of flux estimates.
Resumo:
The influence of liming on rhizosphere microbial biomass C and incorporation of root exudates was studied in the field by in situ pulse labelling of temperate grassland vegetation with (13)CO(2) for a 3-day period. In plots that had been limed (CaCO(3) amended) annually for 3 years, incorporation into shoots and roots was, respectively, greater and lower than in unlimed plots. Analysis of chloroform-labile C demonstrated lower levels of (13)C incorporation into microbial biomass in limed soils compared to unlimed soils. The turnover of the recently assimilated (13)C compounds was faster in microbial biomass from limed than that from unlimed soils, suggesting that liming increases incorporation by microbial communities of root exudates. An exponential decay model of (13)C in total microbial biomass in limed soils indicated that the half-life of the tracer within this carbon pool was 4.7 days. Results are presented and discussed in relation to the absolute values of (13)C fixed and allocated within the plant-soil system.
Resumo:
Abstract Image
A high-capacity diffusive gradients in thin films (DGT) technique has been developed for measurement of total dissolved inorganic arsenic (As) using a long shelf life binding gel layer containing hydrous zirconium oxide (Zr-oxide). Both As(III) and As(V) were rapidly accumulated in the Zr-oxide gel and could be quantitatively recovered by elution using 1.0 M NaOH for freshwater or a mixture of 1.0 M NaOH and 1.0 M H2O2 for seawater. DGT uptake of As(III) and As(V) increased linearly with deployment time and was independent of pH (2.0–9.1), ionic strength (0.01–750 mM), the coexistence of phosphate (0.25–10 mg P L–1), and the aging of the Zr-oxide gel up to 24 months after production. The capacities of the Zr-oxide DGT were 159 μg As(III) and 434 μg As(V) per device for freshwater and 94 μg As(III) and 152 μg As(V) per device for seawater. These values were 5–29 times and 3–19 times more than those reported for the commonly used ferrihydrite and Metsorb DGTs, respectively. Deployments of the Zr-oxide DGT in As-spiked synthetic seawater provided accurate measurements of total dissolved inorganic As over the 96 h deployment, whereas ferrihydrite and Metsorb DGTs only measured the concentrations accurately up to 24 and 48 h, respectively. Deployments in soils showed that the Zr-oxide DGT was a reliable and robust tool, even for soil samples heavily polluted with As. In contrast, As in these soils was underestimated by ferrihydrite and Metsorb DGTs due to insufficient effective capacities, which were likely suppressed by the competing effects of phosphate.
Resumo:
Experiments were conducted to investigate the interactions between an earthworm species (Lumbricus terrestrius) and soil microflora with respect to the bioavailability and mineralisation of 14C ring-labelled atrazine. Presence of earthworms had no affect on atrazine in soil solution (assayed by soil centrifugation). This soil solution pool was highly time dependent, decreasing considerably as the experiment proceeded. KCl-extractable label was, however, affected by the presence of earthworms, with this pool initially increasing in the presence of the worms. This pool was also highly time-dependent although, the pattern of this dependence did not follow that for label in soil solution. Mineralisation of the atrazine closely followed the KCl exchangeable pool and not that of the soil solution pool. However, label sorbed to the surface of the worms was closely correlated to the soil solution pool. Mineralisation in the presence of earthworms was double that of the controls. By the end of the experiment 6% of added radioactivity was present in the earthworm biomass.
Resumo:
The watersheds at Bear Creek, Oak Ridge, TN, have similar soil–landscape relationships. The lower reaches of many of these watersheds consist of headwater riparian wetlands situated between sloping non-wetland upland zones. The objectives of this study are to examine the effects of (i) slope and geomorphic processes, (ii) human impacts, and (iii) particular characteristics of soils and saprolite that may effect drainage and water movement in the wetlands and adjacent landscapes in one of these watersheds. A transect was run from west to east in a hydrological monitored area at the lower reaches of a watershed on Bear Creek. This transect extended from a steep side slope position across a floodplain, a terrace, and a shoulder slope. On the upland positions of the Nolichucky Shale, mass wasting, overland flow and soil creep currently inhibit soil formation on the steep side slope position where a Typic Dystrudept is present, while soil stability on the shoulder slope has resulted in the formation of a well-developed Typic Hapludult. In these soils, argillic horizons occur above C horizons on less sloping gradients in comparison to steeper slopes, which have Bw horizons over Cr (saprolite) material. A riparian wetland area occupies the floodplain section, where a Typic Endoaquept is characterized by poorly drained conditions that led to the development of redoximorphic features (mottling), gleying, organic matter accumulation, and minimal development of subsurface horizons. A thin colluvial deposit overlies a thick well developed Aquic Hapludalf that formed in alluvial sediments on the terrace position. The colluvial deposit from the adjacent shoulder slope is thought to result from soil creep and anthropogenic erosion caused by past cultivation practices. Runoff from the adjacent sloping landscape and groundwater from the adjacent wetland area perhaps contribute to the somewhat poorly drained conditions of this profile. Perched watertables occur in upland positions due to dense saprolite and clay plugging in the shallow zones of the saprolite. However, no redoximorphic features are observed in the soil on the side slope due to high runoff. Remnants of the underlying shale saprolite, which occur as small discolored zones resembling mottles, are also present. The soils in the study have a CEC of
Resumo:
Site characterization is an essential initial step in determining the feasibility of remedial alternatives at hazardous waste sites. Physicochemical and mineralogical characterization of U-contaminated soils in deeply weathered saprolite at Area 2 of the DOE Field Research Center (FRC) site, Oak Ridge, TN, was accomplished to examine the feasibility of bioremediation. Concentrations of U in soil–saprolite (up to 291 mg kg–1 in oxalate-extractable Uo) were closely related to low pH (ca. 4–5), high effective cation exchange capacity without Ca (64.7–83.2 cmolc kg–1), amorphous Mn content (up to 9910 mg kg–1), and the decreased presence of relative clay mineral contents in the bulk samples (i.e., illite 2.5–12 wt. %, average 32 wt. %). The pH of the fill material ranged from 7.0 to 10.5, whereas the pH of the saprolite ranged from 4.5 to 8. Uranium concentration was highest (about 300 mg kg–1) at around 6 m below land surface near the saprolite–fill interface. The pH of ground water at Area 2 tended to be between 6 and 7 with U concentrations of about 0.9 to 1.7 mg L–1. These site specific characteristics of Area 2, which has lower U and nitrate contamination levels and more neutral ground water pH compared with FRC Areas 1 and 3 (ca. 5.5 and