2 resultados para software OCR, contatori di consumo domestici
Resumo:
Free-roaming dogs (FRD) represent a potential threat to the quality of life in cities from an ecological, social and public health point of view. One of the most urgent concerns is the role of uncontrolled dogs as reservoirs of infectious diseases transmittable to humans and, above all, rabies. An estimate of the FRD population size and characteristics in a given area is the first step for any relevant intervention programme. Direct count methods are still prominent because of their non-invasive approach, information technologies can support such methods facilitating data collection and allowing for a more efficient data handling. This paper presents a new framework for data collection using a topological algorithm implemented as ArcScript in ESRI® ArcGIS software, which allows for a random selection of the sampling areas. It also supplies a mobile phone application for Android® operating system devices which integrates Global Positioning System (GPS) and Google Maps™. The potential of such a framework was tested in 2 Italian regions. Coupling technological and innovative solutions associated with common counting methods facilitate data collection and transcription. It also paves the way to future applications, which could support dog population management systems.
Resumo:
BACKGROUND: Smart tags attached to freely-roaming animals recording multiple parameters at infra-second rates are becoming commonplace, and are transforming our understanding of the way wild animals behave. Interpretation of such data is complex and currently limits the ability of biologists to realise the value of their recorded information.
DESCRIPTION: This work presents Framework4, an all-encompassing software suite which operates on smart sensor data to determine the 4 key elements considered pivotal for movement analysis from such tags (Endangered Species Res 4: 123-37, 2008). These are; animal trajectory, behaviour, energy expenditure and quantification of the environment in which the animal moves. The program transforms smart sensor data into dead-reckoned movements, template-matched behaviours, dynamic body acceleration-derived energetics and position-linked environmental data before outputting it all into a single file. Biologists are thus left with a single data set where animal actions and environmental conditions can be linked across time and space.
CONCLUSIONS: Framework4 is a user-friendly software that assists biologists in elucidating 4 key aspects of wild animal ecology using data derived from tags with multiple sensors recording at high rates. Its use should enhance the ability of biologists to derive meaningful data rapidly from complex data.