12 resultados para single polarization


Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is shown that a side-fed bifilar helix antenna with a single feed, can generate a slant 451 linearly polarized onmidirectional toroidal pattern. The antenna has a low profile and does not require a ground plane. The bifilar helix antenna provides slant 45 degrees polarization over a solid angle of almost 4 pi steradians as compared to a crossed dipole which generates a tilted 45 degrees linearly, polarized pattern only over a solid angle of 1.14 pi steradians. The computed results are validated by experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focused ion beam microscope has been used to cut parallel-sided {100}-oriented thin lamellae of single crystal barium titanate with controlled thicknesses, ranging from 530 nm to 70 nm. Scanning transmission electron microscopy has been used to examine domain configurations. In all cases, stripe domains were observed with {011}-type domain walls in perovskite unit-cell axes, suggesting 90 degrees domains with polarization in the plane of the lamellae. The domain widths were found to vary as the square root of the lamellar thickness, consistent with Kittel's law, and its later development by Mitsui and Furuichi and by Roytburd. An investigation into the manner in which domain period adapts to thickness gradient was undertaken on both wedge-shaped lamellae and lamellae with discrete terraces. It was found that when the thickness gradient was perpendicular to the domain walls, a continuous change in domain periodicity occurred, but if the thickness gradient was parallel to the domain walls, periodicity changes were accommodated through discrete domain bifurcation. Data were then compared with other work in literature, on both ferroelectric and ferromagnetic systems, from which conclusions on the widespread applicability of Kittel's law in ferroics were made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zygotes of the fucoid brown algae provide excellent models for addressing fundamental questions about zygotic symmetry breaking. Although the acquisition of polarity is tightly coordinated with the timing and orientation of the first asymmetric division-with zygotes having to pass through a G1/S-phase checkpoint before the polarization axis can be fixed -the mechanisms behind the interdependence of polarization and cell cycle progression remain unclear. In this study, we combine in vivo Ca(2+) imaging, single cell monitoring of S-phase progression and multivariate analysis of high-throughput intracellular Ca(2+) buffer loading to demonstrate that Ca(2+) signals coordinate polarization and cell cycle progression in the Fucus serratus zygote. Consistent with earlier studies on this organism, and in contrast to animal models, we observe no fast Ca(2+) wave following fertilization. Rather, we show distinct slow localized Ca(2+) elevations associated with both fertilization and S-phase progression, and we show that both S-phase and zygotic polarization are dependent on pre-S-phase Ca(2+) increases. Surprisingly, this Ca(2+) requirement cannot be explained by co-dependence on a single G1/ S-phase checkpoint, as S phase and zygotic polarization are differentially sensitive to pre-S-phase Ca(2+) elevations and can be uncoupled. Furthermore, subsequent cell cycle progression through M phase is independent of localized actin polymerization and zygotic polarization. This absence of a morphogenesis checkpoint, together with the observed Ca(2+)dependences of S phase and polarization, show that the regulation of zygotic division in the brown algae differs from that in other eukaryotic model systems, such as yeast and Drosophila.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A single layer, frequency selective surface based, sub-millimeter wave transmission polarizer is presented that converts incident slant linear 45° polarization into circular polarization upon transmission. The polarization convertor consists of a 30 mm diameter 10 thick silicon reinforced metalized screen containing 2700 resonator cells and perforated with nested split ring slot apertures. The screen was designed and optimized using CST Microwave Studio and predictions were validated experimentally by transmission measurements over the 250-365 GHz frequency range. This frequency range is used for remote environmental monitoring and 325 GHz represents a molecular emission line for H2O. The results obtained show good agreement between measured and modeled predictions. The measured 3 dB axial ratio bandwidth was 11.75%, measured minimum Axial Ratio was 0.19 dB and the measured insertion loss of the single layer screen was 3.38 dB

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This communication investigates the potential for fabrication of micromachined silicon sub-millimeter wave periodic arrays of freestanding slot frequency selective surfaces (FSS) using wet etch KOH technology. The vehicle for this is an FSS for generating circularly polarized signals from an incident linearly polarized signal at normal incidence to the structure. Principal issues and fabrication processes involved from the initial design of the core FSS structures to be made and tested through to their final testing are addressed. Measured and simulated results for crossed and ring slot element shapes in single and double layer polarization convertor structures are presented for sub-mm wave operation. It is shown that 3 dB axial ratio (AR) bandwidths of 21% can be achieved with the one layer perforated screen design and that the rate of change is lower than the double layer structures. An insertion loss of 1.1 dB can be achieved for the split circular ring double layer periodic array. These results are shown to be compatible with the more specialized fabrication equipment dry reactive ion etching approach previously used for the construction of this type of structure. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Domain states in PbZr(0.42)Ti(0.58)O3 single-crystal ferroelectric nanodots, formed on cooling through the Curie temperature, were imaged by transmission electron microscopy. In the majority of cases, 90o stripe domains were found to form into four distinct “bundles” or quadrants. Detailed analysis of the dipole orientations in the system was undertaken, using both dark-field imaging and an assumption that charged domain walls were energetically unfavorable in comparison to uncharged walls. On this basis, we conclude that the dipoles in these nanodots are arranged such that the resultant polarizations, associated with the four quadrant domain bundles, form into a closed loop. This “polarization closure” pattern is reminiscent of the flux-closure already commonly observed in soft ferromagnetic microdots but to date unseen in analogous ferroelectric dots.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We address the propagation of a single photon pulse with two polarization components, i.e., a polarization qubit, in an inhomogeneously broadened "phaseonium" \Lambda-type three-level medium. We combine some of the non-trivial propagation effects characteristic for this kind of coherently prepared systems and the controlled reversible inhomogeneous broadening technique to propose several quantum information processing applications, such as a protocol for polarization qubit filtering and sieving as well as a tunable polarization beam splitter. Moreover, we show that, by imposing a spatial variation of the atomic coherence phase, an effcient quantum memory for the incident polarization qubit can be also implemented in \Lambda-type three-level systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate an optical quantum memory scheme with V-type three-level atoms based on the controlled reversible inhomogeneous broadening (CRIB) technique. We theoretically show the possibility to store and retrieve a weak light pulse interacting with the two optical transitions of the system. This scheme implements a quantum memory for a polarization qubit - a single photon in an arbitrary polarization state - without the need of two spatially separated two-level media, thus offering the advantage of experimental compactness overcoming the limitations due to mismatching and unequal efficiencies that can arise in spatially separated memories. The effects of a relative phase change between the atomic levels, as well as of phase noise due to, for example, the presence of spurious electric and magnetic fields are analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between retention loss in single crystal PbTiO3 ferroelectric thin films and leakage currents is demonstrated by piezoresponse and conductive atomic force microscopy measurements. It was found that the polarization reversal in the absence of an electric field followed a stretched exponential behavior 1-exp[-(t/k)(d)] with exponent d>1, which is distinct from a dispersive random walk process with d <. The latter has been observed in polycrystalline films for which retention loss was associated with grain boundaries. The leakage current indicates power law scaling at short length scales, which strongly depends on the applied electric field. Additional information of the microstructure, which contributes to an explanation of the presence of leakage currents, is presented with high resolution transmission electron microscopy analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a simple polarization encoding strategy that operates using only single element dual port transmit and receive antennas in such a way that selective spatial scrambling of QPSK data can be effected. The key transmitter and receiver relationships needed for this operation to occur are derived. The system is validated using a cross dipole antenna arrangement. Unlike all previously reported physical layer wireless solutions the approach developed in this paper transfers the security property to the receive side resulting in very simple transmit and receive side architectures thus avoiding the need for near field modulated array technology. In addition the scheme permits, for the first time, multiple spatially separated secured receive sites to operate in parallel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High order harmonics generated at relativistic intensities have long been recognized as a route to the most powerful extreme ultraviolet pulses. Reliably generating isolated attosecond pulses requires gating to only a single dominant optical cycle, but techniques developed for lower power lasers have not been readily transferable. We present a novel method to temporally gate attosecond pulse trains by combining noncollinear and polarization gating. This scheme uses a split beam configuration which allows pulse gating to be implemented at the high beam fluence typical of multi-TW to PW class laser systems. Scalings for the gate width demonstrate that isolated attosecond pulses are possible even for modest pulse durations achievable for existing and planned future ultrashort high-power laser systems. Experimental results demonstrating the spectral effects of temporal gating on harmonic spectra generated by a relativistic laser plasma interaction are shown.