30 resultados para silk nest


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evolutionary conflicts among social hymenopteran nestmates are theoretically likely to arise over the production of males and the sex ratio. Analysis of these conflicts has become an important focus of research into the role of kin selection in shaping social traits of hymenopteran colonies. We employ microsatellite analysis of nestmates of one social hymenopteran, the primitively eusocial and monogynous bumblebee Bombus hypnorum, to evaluate these conflicts. In our 14 study colonies, B. hypnorum queens mated between one and six times (arithmetic mean 2.5). One male generally predominated, fathering most of the offspring, thus the effective number of matings was substantially lower (1–3.13; harmonic mean 1.26). In addition, microsatellite analysis allowed the detection of alien workers, those who could not have been the offspring of the queen, in approximately half the colonies. Alien workers within the same colony were probably sisters. Polyandry and alien workers resulted in high variation among colonies in their sociogenetic organization. Genetic data were consistent with the view that all males (n = 233 examined) were produced by a colony’s queen. Male parentage was therefore independent of the sociogenetic organization of the colony, suggesting that the queen, and not the workers, was in control of the laying of male-destined eggs. The population-wide sex ratio (fresh weight investment ratio) was weakly female biased. No evidence for colony-level adaptive sex ratio biasing could be detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For primitively eusocial insects in which a single foundress establishes a nest at the start of the colony cycle, the solitary provisioning phase before first worker emergence represents a risky period when other, nestless foundresses may attempt to usurp the nest. In the primitively eusocial sweat bee Lasioglossum malachurum (Hymenoptera, Halictidae), spring foundresses compete for nests which are dug into hard soil. Nest-searching foundresses (‘floaters’) frequently inspected nests during this solitary phase and thereby exerted a usurpation pressure on resident queens. Usurpation has been hypothesised to increase across the solitary provisioning phase and favour closure of nests at an aggregation, marking the termination of the solitary provisioning phase by foundresses, before worker emergence. However, our experimental and observational data suggest that usurpation pressure may remain constant or even decrease across the solitary provisioning phase and therefore cannot explain nest closure before first worker emergence. Levels of aggression during encounters between residents and floaters were surprisingly low (9% of encounters across 2 years), and the outcome of confrontations was in favour of residents (resident maintains residency in 94% of encounters across 2 years). Residents were significantly larger than floaters. However, the relationship between queen size and offspring production, though positive, was not statistically significant. Size therefore seems to confer a considerable advantage to a queen during the solitary provisioning phase in terms of nest residency, but its importance in terms of worker production appears marginal. Factors other than intraspecific usurpation need to be invoked to explain the break in provisioning activity of a foundress before first worker emergence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We generalise Dedden's Theorem for nest algebras to nest algebra bimodules. We define an object which extends the Jacobson radical of a nest algebra, and characterose it generalising a theorem of Erdos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that if $\cl A$ is the tensor product of finitely many continuous nest algebras, $\cl B$ is a CDCSL algebra and $\cl A$ and $\cl B$ have the same normaliser semi-group then either $\cl A = \cl B$ or $\cl A^* = \cl B$.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of animals have evolved to produce silk-based composite materials for a variety of task-specific applications. The review initially focuses on the composite structure of silk fibers produced naturally by silkworms and spiders, followed by the preparation and applications of man-made composite materials (including fibers, films, foams, gels and particulates) incorporating silk proteins in combination with other polymers (both natural and synthetic) and/or inorganic particles. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A huge variety of proteins are able to form fibrillar structures(1), especially at high protein concentrations. Hence, it is surprising that spider silk proteins can be stored in a soluble form at high concentrations and transformed into extremely stable fibres on demand(2,3). Silk proteins are reminiscent of amphiphilic block copolymers containing stretches of polyalanine and glycine-rich polar elements forming a repetitive core flanked by highly conserved non-repetitive amino-terminal(4,5) and carboxy-terminal(6) domains. The N-terminal domain comprises a secretion signal, but further functions remain unassigned. The C-terminal domain was implicated in the control of solubility and fibre formation(7) initiated by changes in ionic composition(8,9) and mechanical stimuli known to align the repetitive sequence elements and promote beta-sheet formation(10-14). However, despite recent structural data(15), little is known about this remarkable behaviour in molecular detail. Here we present the solution structure of the C-terminal domain of a spider dragline silk protein and provide evidence that the structural state of this domain is essential for controlled switching between the storage and assembly forms of silk proteins. In addition, the C-terminal domain also has a role in the alignment of secondary structural features formed by the repetitive elements in the backbone of spider silk proteins, which is known to be important for the mechanical properties of the fibre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Major ampullate silk fibers of orb web-weaving spiders have impressive mechanical properties due to the fact that the underlying proteins partially fold into helical/amorphous structures, yielding relatively elastic matrices that are toughened by anisotropic nanoparticulate inclusions (formed from stacks of beta-sheets of the same proteins). In vivo the transition from soluble protein to solid fibers involves a combination of chemical and mechanical stimuli (such as ion exchange, extraction of water and shear forces). Here we elucidate the effects of such stimuli on the in vitro aggregation of engineered and recombinantly produced major ampullate silk-like proteins (focusing on structure-function relationships with respect to their primary structures), and discuss their relevance to the storage and assembly of spider silk proteins in vivo. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural spider silk fibers have impressive mechanical properties (outperforming many man-made fibers) and are, moreover, biocompatible, biodegradable, and produced under benign conditions (using water as a solvent at ambient temperature). The problems associated with harvesting natural spider silks inspired us to devise a method to produce spider silk-like proteins biotechnologically (the first subject tackled in this highlight); we subsequently discuss their processing into various materials morphologies, and some potential technical and biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biocompatibility and biodegradability of natural silk fibres and the benign conditions under which they (with impressive mechanical properties) are produced represent a biomimetic ideal. This ideal has inspired people in both academia and industry to prepare silk-mimetic polymers and proteins by chemical and/or biotechnological means. in the present paper, we aim to give an overview of the design principles of such silk-inspired polymers/proteins, their processing into various materials morphologies, their mechanical and biological properties, and, finally, their technical and biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silks are protein-based fibers made by arthropods for a variety of task-specific applications. In this article, we review the key features of silk proteins. This article initially focuses on the structure and function of silk proteins produced naturally by silkworms and spiders, followed by the biological and technical processing of silk proteins into a variety of morphologies (including capsules, fibers, films, foams, gels and spheres). Finally, we highlight the potential applications of silk-based materials. 

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lasioglossum malachurum, a bee species common across much of Europe, is obligately eusocial across its range but exhibits clear geographic variation in demography and social behaviour. This variation suggests that social interactions between queens and workers, opportunities for worker oviposition, and patterns of relatedness among nest mates may vary considerably, both within and among regions. In this study, we used three microsatellite loci with 12–18 alleles each to examine the sociogenetic structure of colonies from a population at Agios Nikolaos Monemvasias in southern Greece. These analyses reveal that the majority of colonies exhibit classical eusocial colony structure in which a single queen mated to a single male monopolizes oviposition. Nevertheless, we also detect low rates of multiqueen nest founding, occasional caste switching by worker-destined females, and worker oviposition of both gyne and male-producing eggs in the final brood. Previous evidence that the majority of workers show some ovarian development and a minority (17%) have at least one large oocyte contrasts with the observation that only 2–3% of gynes and males (the so-called reproductive brood) are produced by workers. An evaluation of the parameters of Hamilton's Rule suggests that queens benefit greatly from the help provided by workers but that workers achieve greater fitness by provisioning and laying their own eggs rather than by tending to the queen's eggs. This conflict of interest between the queen and her workers suggests that the discrepancy between potential and achieved worker oviposition is due to queen interference. Comparison of relatedness and maternity patterns in the Agios Nikolaos Monemvasias population with those from a northern population near Tübingen, Germany, points to a north–south cline of increasingly effective queen control of worker behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sweat bees (Family Halictidae) are a socially diverse taxon in which eusociality has arisen independently numerous times. The obligate, primitively eusocial Lasioglossum malachurum, distributed widely throughout Europe, has been considered the zenith of sociality within halictids. A single queen heads a colony of smaller daughter workers which, by mid-summer, produce new sexuals (males and gynes), of which only the mated gynes overwinter to found new colonies the following spring. We excavated successfully 18 nests during the worker- and gyne-producing phases of the colony cycle and analysed each nest's queen and either all workers or all gynes using highly variable microsatellite loci developed specifically for this species. Three important points arise from our analyses. First, queens are facultatively polyandrous (queen effective mating frequency: range 1–3, harmonic mean 1.13). Second, queens may head colonies containing unrelated individuals (n = 6 of 18 nests), most probably a consequence of colony usurpation during the early phase of the colony cycle before worker emergence. Third, nonqueen's workers may, but the queen's own workers do not, lay fertilized eggs in the presence of the queen that successfully develop into gynes, in agreement with so-called 'concession' models of reproductive skew