3 resultados para shrub


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The late-glacial vegetation development in northern Norway in response to climate changes during the Allerod, Younger Dryas (YD), and the transition to the Holocene is poorly known. Here we present a high-resolution record of floral and vegetation changes at lake Lusvatnet, south-west Andoya, between 13500 and 8000 cal b.p. Plant macrofossil and pollen analyses were done on the same sediment core and the proxy records follow each other very closely. The core has also been analyzed using an ITRAX XRF scanner in order to check the sediment sequence for disturbances or hiatuses. The core has a good radiocarbon-based chronology. The Saksunarvatn tephra fits very well chronostratigraphically. During both the Allerod and the Younger Dryas time-periods arctic vegetation prevailed, dominated by Salix polaris associated with many typically arctic herbs such as Saxifraga cespitosa, Saxifraga rivularis and Oxyria digyna. Both periods were cold and dry. Between 12450 and 12250 cal b.p. during the Younger Dryas chronozone, the assemblage changed, particularly in the increased abundance of Papaver sect. Scapiflora and other high-Arctic herbs, suggesting the development of polar desert vegetation mainly as a response to increased aridity. After 11520 cal b.p. a gradually warmer and more oceanic climate initiated a succession to dwarf-shrub vegetation and the establishment of Betula woodland after 1,000 years at c. 10520 cal b.p. The overall late-glacial aridity contrasts with oceanic conditions in southern Norway and is probably related to sea-ice extent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 40 cm thick primary bed of Old Crow tephra (131 ± 11 ka), an important stratigraphic marker in eastern Beringia, directly overlies a vegetated surface at Palisades West, on the Yukon River in central Alaska. Analyses of insect, bryophyte, and vascular plant macrofossils from the buried surface and underlying organic-rich silt suggest the local presence of an aquatic environment and mesic shrub-tundra at the time of tephra deposition. Autochthonous plant and insect macrofossils from peat directly overlying Old Crow tephra suggest similar aquatic habitats and hydric to mesic tundra environments, though pollen counts indicate a substantial herbaceous component to the regional tundra vegetation. Trace amounts of arboreal pollen in sediments associated with the tephra probably reflect reworking from older deposits, rather than the local presence of trees. The revised glass fission-track age for Old Crow tephra places its deposition closer to the time of the last interglaciation than earlier age determinations, but stratigraphy and paleoecology of sites with Old Crow tephra indicate a late Marine Isotope Stage 6 age. Regional permafrost degradation and associated thaw slumping are responsible for the close stratigraphic and paleoecological relations between Old Crow tephra and last interglacial deposits at some sites in eastern Beringia. © 2009 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A sediment record from a small lake in the north-eastern part of the Kamchatka Peninsula has been investigated in a multi-proxy study to gain knowledge of Holocene climatic and environmental change. Pollen, diatoms, chironomids and selected geochemical parameters were analysed and the sediment record was dated with radiocarbon. The study shows Holocene changes in the terrestrial vegetation as well as responses of the lake ecosystem to catchment maturity and multiple stressors, such as climate change and volcanic eruptions. Climate change is the major driving force resulting in the recorded environmental changes in the lake, although recurrent tephra deposition events also contributed. The sediment record has an age at the base of about 10,000 cal yrs BP, and during the first 400 years the climate was cold and the lake exhibited extensive ice-cover during winter and relatively low primary production. Soils in the catchment were poor with shrub alder and birches dominating the vegetation surrounding the lake. At about 9600–8900 cal yrs BP the climate was cold and moist, and strong seasonal wind stress resulted in reduced ice-cover and increased primary production. After ca. 8900 cal yrs BP the forest density increased around the lake, runoff decreased in a generally drier climate resulting in decreased primary production in the lake until ca. 7000 cal yrs BP. This generally dry climate was interrupted by a brief climatic perturbation, possibly attributed to the 8.2 ka event, indicating increasingly windy conditions with thick snow cover, reduced ice-cover and slightly elevated primary production in the lake. The diatom record shows maximum thermal stratification at ca. 6300–5800 cal yrs BP and indicates together with the geochemical proxies a dry and slightly warmer climate resulting in a high productive lake. The most remarkably change in the catchment vegetation occurred at ca. 4200 cal yrs BP in the form of a conspicuous increase in Siberian dwarf pine (Pinus pumila), indicating a shift to a cooler climate with a thicker and more long-lasting snow cover. This vegetational change was accompanied by marked shifts in the diatom and chironomid stratigraphies, which are also indicative of colder climate and more extensive ice-cover.