6 resultados para series-parallel model
Resumo:
An analysis of the operation of a new series-L/parallel-tuned Class-E amplifier and its equivalence to the classic shunt-C/series-tuned Class-E amplifier are presented. The first reported closed form design equations for the series-L/parallel-tuned topology operating under ideal switching conditions are given, including the switch current and voltage in steady state, the circuit component values, the peak values of switch current and voltage and the power-output capability. Theoretical analysis is confirmed by numerical simulation for a 500 mW (27 dBm), 10% bandwidth, 5 V series-L/parallel-tuned, then, shunt-C/series-tuned Class-E power amplifier, operating at 2.5 GHz. Excellent agreement between theory and simulation results is achieved.
Resumo:
Due to the variability and stochastic nature of wind power system, accurate wind power forecasting has an important role in developing reliable and economic power system operation and control strategies. As wind variability is stochastic, Gaussian Process regression has recently been introduced to capture the randomness of wind energy. However, the disadvantages of Gaussian Process regression include its computation complexity and incapability to adapt to time varying time-series systems. A variant Gaussian Process for time series forecasting is introduced in this study to address these issues. This new method is shown to be capable of reducing computational complexity and increasing prediction accuracy. It is further proved that the forecasting result converges as the number of available data approaches innite. Further, a teaching learning based optimization (TLBO) method is used to train the model and to accelerate
the learning rate. The proposed modelling and optimization method is applied to forecast both the wind power generation of Ireland and that from a single wind farm to show the eectiveness of the proposed method.
Resumo:
The category of rational SO(2)--equivariant spectra admits an algebraic model. That is, there is an abelian category A(SO(2)) whose derived category is equivalent to the homotopy category of rational$SO(2)--equivariant spectra. An important question is: does this algebraic model capture the smash product of spectra? The category A(SO(2)) is known as Greenlees' standard model, it is an abelian category that has no projective objects and is constructed from modules over a non--Noetherian ring. As a consequence, the standard techniques for constructing a monoidal model structure cannot be applied. In this paper a monoidal model structure on A(SO(2)) is constructed and the derived tensor product on the homotopy category is shown to be compatible with the smash product of spectra. The method used is related to techniques developed by the author in earlier joint work with Roitzheim. That work constructed a monoidal model structure on Franke's exotic model for the K_(p)--local stable homotopy category. A monoidal Quillen equivalence to a simpler monoidal model category that has explicit generating sets is also given. Having monoidal model structures on the two categories removes a serious obstruction to constructing a series of monoidal Quillen equivalences between the algebraic model and rational SO(2)--equivariant spectra.
Resumo:
Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.
Resumo:
Motivated by environmental protection concerns, monitoring the flue gas of thermal power plant is now often mandatory due to the need to ensure that emission levels stay within safe limits. Optical based gas sensing systems are increasingly employed for this purpose, with regression techniques used to relate gas optical absorption spectra to the concentrations of specific gas components of interest (NOx, SO2 etc.). Accurately predicting gas concentrations from absorption spectra remains a challenging problem due to the presence of nonlinearities in the relationships and the high-dimensional and correlated nature of the spectral data. This article proposes a generalized fuzzy linguistic model (GFLM) to address this challenge. The GFLM is made up of a series of “If-Then” fuzzy rules. The absorption spectra are input variables in the rule antecedent. The rule consequent is a general nonlinear polynomial function of the absorption spectra. Model parameters are estimated using least squares and gradient descent optimization algorithms. The performance of GFLM is compared with other traditional prediction models, such as partial least squares, support vector machines, multilayer perceptron neural networks and radial basis function networks, for two real flue gas spectral datasets: one from a coal-fired power plant and one from a gas-fired power plant. The experimental results show that the generalized fuzzy linguistic model has good predictive ability, and is competitive with alternative approaches, while having the added advantage of providing an interpretable model.