14 resultados para septin
Resumo:
The Ov/Br septin gene, which is also a fusion partner of MLL in acute myeloid leukaemia, is a member of a family of novel GTP binding proteins that have been implicated in cytokinesis and exocytosis. In this study, we describe the genomic and transcriptional organization of this gene, detailing seventeen exons distributed over 240 kb of sequence. Extensive database analyses identified orthologous rodent cDNAs that corresponded to new, unidentified 5' splice variants of the Ov/Br septin gene, increasing the total number of such variants to six. We report that splicing events, occurring at non-canonical sites within the body of the 3' terminal exon, remove either 1801 bp or 1849 bp of non-coding sequence and facilitate access to a secondary open reading frame of 44 amino acids maintained near the end of the 3' UTR. These events constitute a novel coding arrangement and represent the first report of such a design being implemented by a eukaryotic gene. The various Ov/Br proteins either differ minimally at their amino and carboxy termini or are equivalent to truncated versions of larger isoforms. Northern analysis with an Ov/Br septin 3' UTR probe reveals three transcripts of 4.4, 4 and 3 kb, the latter being restricted to a sub-set of the tissues tested. Investigation of the identified Ov/Br septin isoforms by RT-PCR confirms a complex transcriptional pattern, with several isoforms showing tissue-specific distribution. To date, none of the other human septins have demonstrated such transcriptional complexity.
Resumo:
Anillin is an actin-binding protein that can bind septins and is a component of the cytokinetic ring. We assessed the anillin expression in 7,579 human tissue samples and cell lines by DNA micro-array analysis. Anillin is expressed ubiquitously but with variable levels of expression, being highest in the central nervous system. The median level of anillin mRNA expression was higher in tumors than normal tissues (median fold increase 2.58; 95% confidence intervals, 2.19-5.68, P < 0.0001) except in the central nervous system where anillin in RNA levels were lower in tumors. We developed a sensitive reverse transcription-PCR strategy to show that anillin mRNA is expressed in cell lines and in cDNA panels derived from fetal and adult tissues, thus validating the microarray data. We compared anillin with Ki67 in RNA expression and found a significant linear relationship between anillin and Ki67 mRNA expression (Spearmann r similar to 0.6, P < 0.0001). Anillin mRNA expression was analyzed during tumor progression in breast, ovarian, kidney, colorectal, hepatic, lung, endometrial, and pancreatic tumors and in all tissues there was progressive, increase in anillin mRNA expression from normal to benign to malignant to metastatic disease. Finally, we used anti-anillin sera and found nuclear anillin immuncireactivity to be widespread in normal tissues, often not correlating with proliferative compartments. These data provide insight into the existence of non proliferation-associated activities of anillin and roles in interphase nuclei. Thus, anillin is overexpressed in diverse common human tumors, but not simply as a consequence of being a proliferation marker. Anillin may have potential as a novel biomarker.
Resumo:
The septin family of genes has been implicated in a variety of cellular processes including cytokinesis, membrane transport and fusion, exocytosis, and apoptosis. One member of the septin family maps to chromosome 17q25.3, a region commonly deleted in sporadic ovarian and breast tumours, and has also been identified as a fusion partner of MLL in acute myeloid leukaemias. The present study demonstrates that the pattern of expression of multiple splice variants of this septin gene is altered in ovarian tumours and cell lines. In particular, expression of the zeta transcript is detectable in the majority of tumours and cell lines, but not in a range of non-malignant adult and fetal tissues. Zeta expression is accompanied by loss of the ubiquitous beta transcript. Somatic mutations of the gene were not detected in ovarian tumours, but it was demonstrated that beta expression in tumour cell lines can be reactivated by 5-azacytidine treatment, suggesting a role for methylation in the control of expression of this gene. Copyright © 2003 John Wiley & Sons, Ltd.
Resumo:
Septins are an evolutionarily conserved group of GTP-binding and filament-forming proteins that belong to the large superclass of P-loop GTPases. While originally discovered in yeast as cell division cycle mutants with cytokinesis defects, they are now known to have diverse cellular roles which include polarity determination, cytoskeletal reorganization, membrane dynamics, vesicle trafficking, and exocytosis. Septin proteins form homo- and hetero-oligomeric polymers which can assemble into higher-order filaments. They are also known to interact with components of the cytoskeleton, ie actin and tubulin. The precise role of GTP binding is not clear but a current model suggests that it is associated with conformational changes which alter binding to other proteins. There are at least 12 human septin genes, and although information on expression patterns is limited, most undergo complex alternative splicing with some degree of tissue specificity. Nevertheless, an increasing body of data implicates the septin family in the pathogenesis of diverse disease states including neoplasia, neurodegenerative conditions, and infections. Here the known biochemical properties of mammalian septins are reviewed in the light of the data from yeast and other model organisms. The data implicating septins in human disease are considered and a model linking these data is proposed. It is posited that septins can act as regulatable scaffolds where the stoichiometry of septin associations, modifications, GTP status, and the interactions with other proteins allow the regulation of key cellular processes including polarity determination. Derangements of such septin scaffolds thus explain the role of septins in disease states. Copyright © 2004 Pathological Society of Great Britain and Ireland.
Resumo:
Members of the evolutionarily conserved septin family of genes are emerging as key components of several cellular processes including membrane trafficking, cytokinesis, and cell-cycle control events. SEPT9 has been shown to have a complex genomic architecture, such that up to 15 different isoforms are possible by the shuffling of five alternate amino termini and three alternate carboxy termini. Genomic and transcriptional alterations of SEPT9 have been associated with neoplasia. The present study has used a Sept9-specific antibody to determine the pattern of isoform expression in a range of tumour cell lines. Western blot analysis indicated considerable variation in the relative amounts and isoform content of Sept9. Immunofluorescence studies showed a range of patterns of cytoplasmic localization ranging from mainly particulate to mainly filamentous. Expression constructs were also generated for each amino terminal isoform to investigate the patterns of localization of individual isoforms and the effects on cells of ectopic expression. The present study shows that the epsilon isoform appears filamentous in this overexpression system while the remaining isoforms are particulate and cytoplasmic. Transient transfection of individual constructs into tumour cell lines results in cell-cycle perturbation with a G2/M arrest and dramatic growth suppression, which was greatest in cell lines with the lowest amounts of endogenous Sept9. Similar phenotypic observations were made with GTP-binding mutants of all five N-terminal variants of Sept9. However, dramatic differences were observed in the kinetics of accumulation of wild-type versus mutant septin protein in transfected cells. In conclusion, the present study shows that the expression patterns of Sept9 protein are very varied in a panel of tumour cell lines and the functional studies are consistent with a model of septin function as a component of a molecular scaffold that contributes to diverse cellular functions. Alterations in the levels of Sept9 protein by overexpression of individual isoforms can clearly perturb cellular behaviour and may thus provide a mechanistic explanation for observations of deranged septin expression in neoplasia. Copyright © 2004 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Resumo:
A common feature of the mammalian septin gene family is complex genomic architecture with multiple alternate splice variants. Septin 9 has 18 distinct transcripts encoding 15 polypeptides, with two transcripts (SEPT9_v4 and v4*) encoding the same polypeptide. We have previously reported that the ratio of these distinct transcripts is altered in neoplasia, with the v4 transcript being the usual form in normal cells but v4* becoming predominant in tumours. This led us to ask what the functional differences between these two transcripts might be. The 5'-UTRs of v4 and v4* have distinct 5' ends encoded by exons 1 beta (v4) and 1 zeta and 2 (v4*) and a common 3' region and initiating ATG encoded within exon 3. Here we show that the two mRNAs are translated with different efficiencies and that cellular stress can alter this. A putative internal ribosome entry site can be identified in the common region of the v4 and v4* 5'-UTRs and translation is modulated by an upstream open-reading frame in the unique region of the v4 5'-UTR. Germline mutations in hereditary neuralgic amyotrophy (HNA) map to the region which is common to the two UTRs. These mutations dramatically enhance the translational efficiency of the v4 5'-UTR, leading to elevated SEPT9_v4 protein under hypoxic conditions. Our data provide a mechanistic insight into how the HNA mutations can alter the fine control of SEPT9_v4 protein and its regulation under physiologically relevant conditions and are consistent with the episodic and stress-induced nature of the clinical features of HNA.
Resumo:
BACKGROUND: The evolutionarily conserved septin family of genes encode GTP binding proteins involved in a variety of cellular functions including cytokinesis, apoptosis, membrane dynamics and vesicle trafficking. Septin proteins can form hetero-oligomeric complexes and interact with other proteins including actin and tubulin. The human SEPT9 gene on chromosome 17q25.3 has a complex genomic architecture with 18 different transcripts that can encode 15 distinct polypeptides. Two distinct transcripts with unique 5' ends (SEPT9_v4 and SEPT9_v4*) encode the same protein. In tumours the ratio of these transcripts changes with elevated levels of SEPT9_v4* mRNA, a transcript that is translated with enhanced efficiency leading to increased SEPT9_i4 protein.
METHODS: We have examined the effect of over-expression of SEPT9_i4 on the dynamics of microtubule polymer mass in cultured cells.
RESULTS: We show that the microtubule network in SEPT9_i4 over-expressing cells resists disruption by paclitaxel or cold incubation but also repolymerises tubulin more slowly after microtubule depolymerisation. Finally we show that SEPT9_i4 over-expressing cells have enhanced survival in the presence of clinically relevant microtubule acting drugs but not after treatment with DNAinteracting agents.
CONCLUSIONS: Given that SEPT9 over-expression is seen in diverse tumours and in particular ovarian and breast cancer, such data indicate that SEPT9_v4 expression may be clinically relevant and contribute to some forms of drug resistance.