61 resultados para self-consistent calculation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study non-Markovian decoherence phenomena by employing projection-operator formalism when a quantum system (a quantum bit or a register of quantum bits) is coupled to a reservoir. By projecting out the degree of freedom of the reservoir, we derive a non-Markovian master equation for the system, which is reduced to a Lindblad master equation in Markovian limit, and obtain the operator sum representation for the time evolution. It is found that the system is decohered slower in the non- Markovian reservoir than the Markovian because the quantum information of the system is memorized in the non-Markovian reservoir. We discuss the potential importance of non-Markovian reservoirs for quantum-information processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe an empirical, self-consistent, orthogonal tight-binding model for zirconia, which allows for the polarizability of the anions at dipole and quadrupole levels and for crystal field splitting of the cation d orbitals, This is achieved by mixing the orbitals of different symmetry on a site with coupling coefficients driven by the Coulomb potentials up to octapole level. The additional forces on atoms due to the self-consistency and polarizabilities are exactly obtained by straightforward electrostatics, by analogy with the Hellmann-Feynman theorem as applied in first-principles calculations. The model correctly orders the zero temperature energies of all zirconia polymorphs. The Zr-O matrix elements of the Hamiltonian, which measure covalency, make a greater contribution than the polarizability to the energy differences between phases. Results for elastic constants of the cubic and tetragonal phases and phonon frequencies of the cubic phase are also presented and compared with some experimental data and first-principles calculations. We suggest that the model will be useful for studying finite temperature effects by means of molecular dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An exact and general approach to study molecular vibrations is provided by the Watson Hamiltonian. Within this framework, it is customary to omit the contribution of the terms with the vibrational angular momentum and the Watson term, especially for the study of large systems. We discover that this omission leads to results which depend on the choice of the reference structure. The self-consistent solution proposed here yields a geometry that coincides with the quantum averaged geometry of the Watson Hamiltonian and appears to be a promising way for the computation of the vibrational spectra of strongly anharmonic systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A dynamical method for inelastic transport simulations in nanostructures is compared to a steady-state method based on nonequilibrium Green's functions. A simplified form of the dynamical method produces, in the steady state in the weak-coupling limit, effective self-energies analogous to those in the Born approximation due to electron-phonon coupling. The two methods are then compared numerically on a resonant system consisting of a linear trimer weakly embedded between metal electrodes. This system exhibits an enhanced heating at high biases and long phonon equilibration times. Despite the differences in their formulation, the static and dynamical methods capture local current-induced heating and inelastic corrections to the current with good agreement over a wide range of conditions, except in the limit of very high vibrational excitations where differences begin to emerge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiative pressure exerted by line interactions is a prominent driver of outflows in astrophysical systems, being at work in the outflows emerging from hot stars or from the accretion discs of cataclysmic variables, massive young stars and active galactic nuclei. In this work, a new radiation hydrodynamical approach to model line-driven hot-star winds is presented. By coupling a Monte Carlo radiative transfer scheme with a finite volume fluid dynamical method, line-driven mass outflows may be modelled self-consistently, benefiting from the advantages of Monte Carlo techniques in treating multiline effects, such as multiple scatterings, and in dealing with arbitrary multidimensional configurations. In this work, we introduce our approach in detail by highlighting the key numerical techniques and verifying their operation in a number of simplified applications, specifically in a series of self-consistent, one-dimensional, Sobolev-type, hot-star wind calculations. The utility and accuracy of our approach are demonstrated by comparing the obtained results with the predictions of various formulations of the so-called CAK theory and by confronting the calculations with modern sophisticated techniques of predicting the wind structure. Using these calculations, we also point out some useful diagnostic capabilities our approach provides. Finally, we discuss some of the current limitations of our method, some possible extensions and potential future applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present self-consistent, axisymmetric core-collapse supernova simulations performed with the Prometheus-Vertex code for 18 pre-supernova models in the range of 11–28 M ⊙, including progenitors recently investigated by other groups. All models develop explosions, but depending on the progenitor structure, they can be divided into two classes. With a steep density decline at the Si/Si–O interface, the arrival of this interface at the shock front leads to a sudden drop of the mass-accretion rate, triggering a rapid approach to explosion. With a more gradually decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion ram pressure and explosions set in later. Early explosions are facilitated by high mass-accretion rates after bounce and correspondingly high neutrino luminosities combined with a pronounced drop of the accretion rate and ram pressure at the Si/Si–O interface. Because of rapidly shrinking neutron star radii and receding shock fronts after the passage through their maxima, our models exhibit short advection timescales, which favor the efficient growth of the standing accretion-shock instability. The latter plays a supportive role at least for the initiation of the re-expansion of the stalled shock before runaway. Taking into account the effects of turbulent pressure in the gain layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of all models very well. We validate the robustness of our findings by testing the influence of stochasticity, numerical resolution, and approximations in some aspects of the microphysics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present TARDIS-an open-source code for rapid spectral modelling of supernovae (SNe). Our goal is to develop a tool that is sufficiently fast to allow exploration of the complex parameter spaces of models for SN ejecta. This can be used to analyse the growing number of highquality SN spectra being obtained by transient surveys. The code uses Monte Carlo methods to obtain a self-consistent description of the plasma state and to compute a synthetic spectrum. It has a modular design to facilitate the implementation of a range of physical approximations that can be compared to assess both accuracy and computational expediency. This will allow users to choose a level of sophistication appropriate for their application. Here, we describe the operation of the code and make comparisons with alternative radiative transfer codes of differing levels of complexity (SYN++, PYTHON and ARTIS). We then explore the consequence of adopting simple prescriptions for the calculation of atomic excitation, focusing on four species of relevance to Type Ia SN spectra-Si II, SII, MgII and Ca II. We also investigate the influence of three methods for treating line interactions on our synthetic spectra and the need for accurate radiative rate estimates in our scheme.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have investigated inner-shell excitation of the LiH + molecular ion by electron impact within several different collision models to delineate Rydberg autoionizing resonance structure associated with the LiH + (1σ2σ 2 2 Σ + ) core-excited threshold. The minimal representation requires only the retention of the 1σ and 2σ molecular orbitals, in which the core-excited state involves the promotion of a single electron into the 2σ orbital. This model is extended to include two further representations, in which both the 3σ and 4σ orbitals obtained from a self-consistent field calculation improve target representation, correlation and support additional autoionization channels. This affects the autoionization widths and to a lesser degree the positions of the LiH (1σ2σ 2 n s, n p 1,3 Σ + ) resonance series. Comparing our work with calculations on the counterpart atomic Be system assists in the assignment of the core-excited molecular resonance states. The results from our investigation provide helpful insights into the study of inner-shell transitions produced by electron or photon impact in more complex diatomic molecules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have made self-consistent models of the density and temperature profiles of the gas and dust surrounding embedded luminous objects using a detailed radiative transfer model together with observations of the spectral energy distribution of hot molecular cores. Using these profiles we have investigated the hot core chemistry which results when grain mantles are evaporated, taking into account the different binding energies of the mantle molecules, as well a model in which we assume that all molecules are embedded in water ice and have a common binding energy. We find that most of the resulting column densities are consistent with those observed toward the hot core G34.3+0.15 at a time around 10^4 years after central luminous star formation. We have also investigated the dependence of the chemical structure on the density profile which suggests an observational possibility of constraining density profiles from determination of the source sizes of line emission from desorbed molecules.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we propose an adaptive approach to merging possibilistic knowledge bases that deploys multiple operators instead of a single operator in the merging process. The merging approach consists of two steps: one is called the splitting step and the other is called the combination step. The splitting step splits each knowledge base into two subbases and then in the second step, different classes of subbases are combined using different operators. Our approach is applied to knowledge bases which are self-consistent and the result of merging is also a consistent knowledge base. Two operators are proposed based on two different splitting methods. Both operators result in a possibilistic knowledge base which contains more information than that obtained by the t-conorm (such as the maximum) based merging methods. In the flat case, one of the operators provides a good alternative to syntax-based merging operators in classical logic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The microscopic mechanism leading to stabilization of cubic and tetragonal forms of zirconia (ZrO2) is analyzed by means of a self-consistent tight-binding model. Using this model, energies and structures of zirconia containing different vacancy concentrations are calculated, equivalent in concentration to the charge compensating vacancies associated with dissolved yttria (Y2O3) in the tetragonal and cubic phase fields (3.2 and 14.4% mol, respectively). The model is shown to predict the large relaxations around an oxygen vacancy, and the clustering of vacancies along the 111 directions, in good agreement with experiments and first principles calculations. The vacancies alone are shown to explain the stabilization of cubic zirconia, and the mechanism is analyzed. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The high-temperature cubic-tetragonal phase transition of pure stoichiometric zirconia is studied by molecular dynamics (MD) simulations and within the framework of the Landau theory of phase transformations. The interatomic forces are calculated using an empirical, self-consistent, orthogonal tight-binding model, which includes atomic polarizabilities up to the quadrupolar level. A first set of standard MD calculations shows that, on increasing temperature, one particular vibrational frequency softens. The temperature evolution of the free-energy surfaces around the phase transition is then studied with a second set of calculations. These combine the thermodynamic integration technique with constrained MD simulations. The results seem to support the thesis of a second-order phase transition but with unusual, very anharmonic behavior above the transition temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent experimental neutron diffraction data and ab initio molecular dynamics simulation of the ionic liquid dimethylimidazolium chloride ([dmim]Cl) have provided a structural description of the system at the molecular level. However, partial radial distribution functions calculated from the latter, when compared to previous classical simulation results, highlight some limitations in the structural description offered by force fieldbased simulations. With the availability of ab initio data it is possible to improve the classical description of [dmim]Cl by using the force matching approach, and the strategy for fitting complex force fields in their original functional form is discussed. A self-consistent optimization method for the generation of classical potentials of general functional form is presented and applied, and a force field that better reproduces the observed first principles forces is obtained. When used in simulation, it predicts structural data which reproduces more faithfully that observed in the ab initio studies. Some possible refinements to the technique, its application, and the general suitability of common potential energy functions used within many ionic liquid force fields are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The self-consistent electron potential in a current-carrying disordered quantum wire is spatially inhomogeneous due to the formation of resistivity dipoles across scattering centres. In this paper it is argued that these inhomogeneities in the potential result in a suppression of the differential conductance of such a wire at finite applied voltage. A semi-classical argument allows this suppression, quadratic in the voltage, to be related directly to the amount of intrinsic defect scattering in the wire. This result is then tested against numerical calculations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The total current-induced force on atoms in a Cu wire containing a vacancy are calculated using the self consistent one-electron density matrix in the presence of an electric current, without separation into electron-wind and direct forces. By integrating the total current-induced force, the change in vacancy migration energy due to the current is calculated. We use the change in migration energy with current to infer an effective electromigration driving force F-e. Finally, we calculate the proportionality constant rho* between F-e and the current density in the wire.