25 resultados para self-assembled quantum dots
Resumo:
The enantiomerically pure ligands LRR and LSS (N,N'-bis(-2,2'-bipyridyl-5-yl)carbonyl-(1S/R,2S/R)-(+/-)-1,2-diaminocyclohexane) have been synthesised by linking two 2,2'-bipyridine units by (R,R)- and (S,S)-1,2-diaminocyclohexane respectively. The crystal structure confirmed that the ligand had a twisted orientation between the two chelating units. The reaction of LRR and LSS with Fe(II), Co(III), Cd(II) and Zn(II) afforded dinuclear complexes confirmed by ES mass spectroscopy. CD spectroscopy indicated that the chiral diaminocyclohexane conferred helicity to the metal centre giving a dominant triple helicate diastereoisomer, with the LRR ligand giving a delta-configuration of each metal centre (P helicate) and the LSS ligand a lambda configuration (M helicate). 1H NMR spectroscopy confirmed a dominant major diastereoisomer with cadmium. The Zn(II) and Cd(II) complexes however were observed to undergo rapid ligand dissociation in solution.
Resumo:
We report on the successful fabrication of arrays of switchable nanocapacitors made by harnessing the self-assembly of materials. The structures are composed of arrays of 20-40 nm diameter Pt nanowires, spaced 50-100 nm apart, electrodeposited through nanoporous alumina onto a thin film lower electrode on a silicon wafer. A thin film ferroelectric (both barium titanate (BTO) and lead zirconium titanate (PZT)) has been deposited on top of the nanowire array, followed by the deposition of thin film upper electrodes. The PZT nanocapacitors exhibit hysteresis loops with substantial remnant polarizations, while although the switching performance was inferior, the low-field characteristics of the BTO nanocapacitors show dielectric behavior comparable to conventional thin film heterostructures. While registration is not sufficient for commercial RAM production, this is nevertheless an embryonic form of the highest density hard-wired FRAM capacitor array reported to date and compares favorably with atomic force microscopy read-write densities.
Resumo:
A copper-rich cereal: Superhydrophobic copper particles show a very large Cheerios effect and rapidly self-assemble into robust sheets on the surface of water. These sheets can support objects (including water drops, see photo) placed on them, even though the irregular geometry of the particles means that they contain macroscopic holes.
Resumo:
Highly charged ions have been used to study the sputtering of positive molecular fragments from mercaptoundecanoic acid and dodecanethiol self-assembled monolayers on gold surfaces. The samples were bombarded with Arq+ (42n+, and Cn+1O2H2n + 1+ from mercaptoundecanoic and H+, CnH2n+, and Cn+1H2n + 3+ from dodecanethiol. The proton yields were increased with larger charge state q of the highly charged ion (HCI) in both samples, scaling as qgamma, with gamma~5. The charge state dependence is discussed in terms of electron transfer to the HCI. The final yield of protons depends on molecular functional group characteristics, orientation on the surface, and reneutralization phenomena.
Resumo:
A facile sonochemical method has been developed to prepare very small zinc sulfide nanoparticles (ZnS NPs) of extremely small size about 1. nm in diameter using a set of ionic liquids based on the bis (trifluoromethylsulfonyl) imide anion and different cations of 1-alkyl-3-methyl-imidazolium. The structural features and optical properties of the NPs were determined in depth with X-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS) analysis, and UV-vis absorption spectroscopy. The energy band gap measurements of ZnS NPs were calculated by UV-vis absorption spectroscopy. One of the interesting features of the present work is that the wide band gap semiconductor ZnS nanocrystals were prepared which are used in the fabrication of photonic devices.
Resumo:
Close-packed monolayers of 20 nm Au nanoparticles are self-assembled at hexane/water interfaces and transferred to elastic substrates. Stretching the resulting nanoparticle mats provides active and reversible tuning of their plasmonic properties, with a clear polarization dependance. Both uniaxial and biaxial strains induce strong blue shifts in the plasmonic resonances. This matches theoretical simulations and indicates that plasmonic coupling at nanometer scale distances is responsible for the observed spectral tuning. Such stretch-tunable metal nanoparticle mats can be exploited for the development of optical devices, such as flexible colour filters and molecular sensors. (C) 2012 American Institute of Physics. [doi:10.1063/1.3683535]
Resumo:
We have imaged the fluorescence from a single quantum dot cluster using an apertureless scanning near-field optical microscope. When a sharp gold tip is brought within a few nanometers from the sample surface, the resulting enhancement in quantum dot fluorescence in the vicinity of the tip leads to a resolution of about 60 nm. We determine this enhancement of the fluorescence to be about fourfold in magnitude, which is consistent with the value expected as a result of competition between fluorescence quenching and electromagnetic field enhancement. (C) 2005 American Institute of Physics.
Resumo:
Rod-like micelles, formed from bolaamphiphiles with oligo(ethylene oxide) hydrophilic outer segments and a hydrophobic segment with diacetylene flanked by two urea moieties, were covalently fixated by topochemical photopolymerization to high degrees of polymerization by optimizing the hydrophobic core and the hydrophilic periphery of the bolaamphiphiles. Analysis of the polymerized product with dynamic light scattering in chloroform showed degrees of polymerization of approximately 250. Cryo-TEM of bolaamphiphiles before and after UV irradiation showed that the morphology of the rods was conserved upon topochemical polymerization. © 2014 The Royal Society of Chemistry.
Resumo:
Self-assembling dipeptides conjugated to naphthalene show considerable promise as nanomaterial structures, biomaterials, and drug delivery devices. Biomaterial infections are responsible for high rates of patient mortality and morbidity. The presence of biofilm bacteria, which thrive on implant surfaces, are a huge burden on healthcare budgets, as they are highly resistant to current therapeutic strategies. Ultrashort cationic self-assembled peptides represent a highly innovative and cost-effective strategy to form antibacterial nanomaterials. Lysine conjugated variants display the greatest potency with 2% w/v NapFFKK hydrogels significantly reducing the viable Staphylococcus epidermidis biofilm by 94%. Reducing the size of the R-group methylene chain on cationic moieties resulted in reduction of antibiofilm activity. The primary amine of the protruding R-group tail may not be as readily available to interact with negatively charged bacterial membranes. Cryo-SEM, FTIR, CD spectroscopy, and oscillatory rheology provided evidence of supramolecular hydrogel formation at physiological pH (pH 7.4). Cytotoxicity assays against murine fibroblast (NCTC 929) cell lines confirmed the gels possessed reduced cytotoxicity relative to bacterial cells, with limited hemolysis upon exposure to equine erythrocytes. The results presented in this paper highlight the significant potential of ultrashort cationic naphthalene peptides as future biomaterials.
Resumo:
Biomaterial-related infections are a persistent burden on patient health, recovery, mortality and healthcare budgets. Self-assembled antimicrobial peptides have evolved from the area of antimicrobial peptides. Peptides serve as important weapons in nature, and increasingly medicine, for combating microbial infection and biofilms. Self-assembled peptides harness a “bottom-up” approach, whereby the primary peptide sequence may be modified with natural and unnatural amino acids to produce an inherently antimicrobial hydrogel. Gelation may be tailored to occur in the presence of physiological and infective indicators (e.g. pH, enzymes) and therefore allow local, targeted antimicrobial therapy at the site of infection. Peptides demonstrate inherent biocompatibility, antimicrobial activity, biodegradability and numerous functional groups. They are therefore prime candidates for the production of polymeric molecules that have the potential to be conjugated to biomaterials with precision. Non-native chemistries and functional groups are easily incorporated into the peptide backbone allowing peptide hydrogels to be tailored to specific functional requirements. This article reviews an area of increasing interest, namely self-assembled peptides and their potential therapeutic applications as innovative hydrogels and biomaterials in the prevention of biofilm-related infection.
Resumo:
A series of supramolecular aggregates were prepared using a poly(propylene oxide) poly(ethylene oxide) poly(propylene oxide) (PPO-PEO-PPO) block copolymer and beta- or alpha-cyclodextrins (CD). The combination of beta-CD and the copolymer yields inclusion complexes (IC) with polypseudorotaxane structures. These are formed by complexation of the PPO blocks with beta-CD molecules producing a powder precipitate with a certain crystallinity degree that can be evaluated by X-ray diffraction (XRD). In contrast, when combining alpha-CD with the block copolymer, the observed effect is an increase in the viscosity of the mixtures, yielding fluid gels. Two cooperative effects come into play: the complexation of PEO blocks with alpha-CD and the hydrophobic interactions between PPO blocks in aqueous media. These two combined interactions lead to the formation of a macromoleculaf network. The resulting fluid gels were characterized using different techniques such as differential scanning calorimetry (DSC), viscometry, and XRD measurements.