3 resultados para sediment particle size


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biodiversity loss is a global problem with freshwater bivalves considered amongst the most
endangered biota. The freshwater pearl mussel, Margaritifera margaritifera, is declining
throughout its range owing to habitat degradation and overexploitation. In most of its range,
populations are regarded as reproductively non-functional which has led to the development
of captive breeding programmes. A novel method of releasing M. margaritifera was trialled,
with captive-bred juveniles being released into the rivers caged in ‘mussels silos’ (protective
concrete domes with ventilation creating upwelling to ensure water through flow). We
released 240 juvenile mussels and survival and growth rates were monitored for 18 months
post-release for three size classes: A (13.01-20.00mm); B (10.01-13.00mm); and C (4.01-
10.00mm). We explicitly tested two experimental treatments; one where sediment was added
to each silo (allowing mussels to orientate and burrow) and one without sediment. Survival
by the end of the experiment at month 18 was significantly higher for the largest size class at
97% (though growth was lowest in this cohort), and lowest for the smallest size class at 61%
(though growth was highest in this cohort). Survival and growth were unaffected by the
experimental treatment suggesting that adding sediment offered no advantage. Growth was
positively correlated with both water temperature and the particle size of suspended solids
(both of which were collinear, peaking in summer). There are a large number of ex situ
breeding programmes for freshwater pearl mussels throughout Europe and our finding
suggest that the use of ‘mussel silos’ could be a useful tool to protecting juvenile mussels
allowing them to be released at a relatively early stage of development, minimising the risk of
domestication.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The particle size, shape and distribution of a range of rotational moulding polyethylenes (PEs) ground to powder was investigated using a novel visual data acquisition and analysis system (TP Picture®), developed by Total Petrochemicals. Differences in the individual particle shape factors of the powder samples were observed and correlations with the grinding conditions were determined. When heated, the bubble dissolution behaviour of the same powders was investigated and the shape factor correlated with densification rate, bubble size and bubble distribution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The source, concentration, and potential impact of sewage discharge and incomplete organic matter (OM) combustion on sedimentary microbial populations were assessed in Dublin Bay, Ireland. Polycyclic aromatic hydrocarbons (PAHs) and faecal steroids were investigated in 30 surface sediment stations in the bay. Phospholipid fatty acid (PLFA) content at each station was used to identify and quantify the broad microbial groups present and the impact of particle size, total organic carbon (%TOC), total hydrogen (%H) and total nitrogen (%N) was also considered. Faecal sterols were found to be highest in areas with historical point sources of sewage discharge. PAH distribution was more strongly associated with areas of deposition containing high %silt and %clay content, suggesting that PAHs are from diffuse sources such as rainwater run-off and atmospheric deposition. The PAHs ranged from 12 to 3072 ng/g, with 10 stations exceeding the suggested effect range low (ERL) for PAHs in marine sediments. PAH isomer pair ratios and sterol ratios were used to determine the source and extent of pollution. PLFAs were not impacted by sediment type or water depth but were strongly correlated to, and influenced by PAH and sewage levels. Certain biomarkers such as 10Me16:0, i17:0 and a17:0 were closely associated with PAH polluted sediments, while 16:1ω9, 16:1ω7c, Cy17:0, 18:1ω6, i16:0 and 15:0 all have strong positive correlations with faecal sterols. Overall, the results show that sedimentary microbial communities are impacted by anthropogenic pollution.