4 resultados para run-time allocation
Resumo:
In this letter, we consider wireless powered communication networks which could operate perpetually, as the base station (BS) broadcasts energy to the multiple energy harvesting (EH) information transmitters. These employ “harvest then transmit” mechanism, as they spend all of their energy harvested during the previous BS energy broadcast to transmit the information towards the BS. Assuming time division multiple access (TDMA), we propose a novel transmission scheme for jointly optimal allocation of the BS broadcasting power and time sharing among the wireless nodes, which maximizes the overall network throughput, under the constraint of average transmit power and maximum transmit power at the BS. The proposed scheme significantly outperforms “state of the art” schemes that employ only the optimal time allocation. If a single EH transmitter is considered, we generalize the optimal solutions for the case of fixed circuit power consumption, which refers to a much more practical scenario.
Resumo:
FPGAs and GPUs are often used when real-time performance in video processing is required. An accelerated processor is chosen based on task-specific priorities (power consumption, processing time and detection accuracy), and this decision is normally made once at design time. All three characteristics are important, particularly in battery-powered systems. Here we propose a method for moving selection of processing platform from a single design-time choice to a continuous run time one.We implement Histogram of Oriented Gradients (HOG) detectors for cars and people and Mixture of Gaussians (MoG) motion detectors running across FPGA, GPU and CPU in a heterogeneous system. We use this to detect illegally parked vehicles in urban scenes. Power, time and accuracy information for each detector is characterised. An anomaly measure is assigned to each detected object based on its trajectory and location, when compared to learned contextual movement patterns. This drives processor and implementation selection, so that scenes with high behavioural anomalies are processed with faster but more power hungry implementations, but routine or static time periods are processed with power-optimised, less accurate, slower versions. Real-time performance is evaluated on video datasets including i-LIDS. Compared to power-optimised static selection, automatic dynamic implementation mapping is 10% more accurate but draws 12W extra power in our testbed desktop system.
Resumo:
This paper addresses three questions: (1) How severe were the episodes of banking instability
experienced by the UK over the past two centuries? (2) What have been the macroeconomic
indicators of UK banking instability? and (3) What have been the consequences of UK banking
instability for the cost of credit? Using a unique dataset of bank share prices from 1830 to 2010
to assess the stability of the UK banking system, we find that banking instability has grown more
severe since the 1970s. We also find that interest rates, inflation, lending growth, and equity
prices are consistent macroeconomic indicators of UK banking instability over the long run.
Furthermore, utilising a unique dataset of corporate-bond yields for the period 1860 to 2010, we
find that there is a significant long-run relationship between banking instability and the creditrisk
premium faced by businesses.
Resumo:
A diverse range of concentrate allocation strategies are adopted on dairy farms. The objectives of this study were to examine the effects on cow performance [dry matter (DM) intake (DMI), milk yield and composition, body tissue changes, and fertility] of adopting 2 contrasting concentrate allocation strategies over the first 140 d of lactation. Seventy-seven Holstein-Friesian dairy cows were allocated to 1 of 2 concentrate allocation strategies at calving, namely group or individual cow. Cows on the group strategy were offered a mixed ration comprising grass silage and concentrates in a 50:50 ratio on a DM basis. Cows on the individual cow strategy were offered a basal mixed ration comprising grass silage and concentrates (the latter included in the mix to achieve a mean intake of 6 kg/cow per day), which was formulated to meet the cow’s energy requirements for maintenance plus 24 kg of milk/cow per day. Additional concentrates were offered via an out-of-parlor feeding system, with the amount offered adjusted weekly based on each individual cow’s milk yield during the previous week. In addition, all cows received a small quantity of straw in the mixed ration part of the diet (approximately 0.3 kg/cow per day), plus 0.5 kg of concentrate twice daily in the milking parlor. Mean concentrate intakes over the study period were similar with each of the 2 allocation strategies (11.5 and 11.7 kg of DM/cow per day for group and individual cow, respectively), although the pattern of intake with each treatment differed over time. Concentrate allocation strategy had no effect on either milk yield (39.3 and 38.0 kg/d for group and individual cow, respectively), milk composition, or milk constituent yield. The milk yield response curves with each treatment were largely aligned with the concentrate DMI curves. Cows on the individual cow treatment had a greater range of concentrate DMI and milk yields than those on the group treatment. With the exception of a tendency for cows on the individual cow treatment to lose more body weight to nadir than cows on the group treatment, concentrate allocation strategy had little effect on either body weight or body condition score over the experimental period. Cows on the individual cow treatment had a higher pregnancy rate to first and second service and tended to have a higher 100-d in calf rate than cows on the group treatment. This study demonstrates that concentrate allocation strategy had little effect on overall production performance.