152 resultados para rotational band
Resumo:
The object of this work is to assess the suitability of metallocene catalyzed linear low-density polyethylenes for the rotational molding of foams and to link the material and processing conditions to cell morphology and part mechanical properties (flexural and compressive strength). Through adjustments to molding conditions, the significant processing and physical material parameters that optimize metallocene catalyzed linear low-density polyethylene foam structure have been identified. The results obtained from an equivalent conventional grade of Ziegler-Natta catalyzed linear low-density polyethylene are used as a basis for comparison. The key findings of this study are that metallocene catalyzed LLDPE can be used in rotational foam molding to produce a foam that will perform as well as a ZieglerNatta catalyzed foam and that foam density Is by far the most Influential factor over mechanical properties of foam. © 2004 Society of Plastics Engineers.
Resumo:
In this paper, we show that a multilayer freestanding slot array can be designed to give an insertion loss which is significantly lower than the value obtainable from a conventional dielectric backed printed frequency selective surface (FSS). This increase in filter efficiency is highlighted by comparing the performance of two structures designed to provide frequency selective beamsplitting in the quasioptical feed train of a submillimeter wave space borne radiometer. A two layer substrateless FSS providing more than 20 dB of isolation between the bands 316.5â??325.5 GHz and 349.5â??358.5 GHz, gives an insertion loss of 0.6 dB when the filter is orientated at 45 incidence in the TM plane, whereas the loss exhibited by a conventional printed FSS is in excess of 2 dB. A similar frequency response can be obtained in the TE plane, but here a triple screen structure is required and the conductor loss is shown to be comparable to the absorption loss of a dielectric backed FSS. Experimental devices have been fabricated using a precision micromachining technique. Transmission measurements performed in the range 250â??360 GHz are in good agreement with the simulated spectral performance of the individual periodic screens and the two multilayer freestanding FSS structures.
Resumo:
The absorption-line spectra of early B-type supergiants show significant broadening that implies that an additional broadening mechanism (characterized here as `macroturbulence') is present in addition to rotational broadening. Using high-resolution spectra with signal-to-noise ratios of typically 500, we have attempted to quantify the relative contributions of rotation and macroturbulence, but even with data of this quality significant problems were encountered. However, for all our targets, a model where macroturbulence dominates and rotation is negligible is acceptable; the reverse scenario leads to poor agreement between theory and observation. Additionally, there is marginal evidence for the degree of broadening increasing with line strength, possibly a result of the stronger lines being formed higher in the atmosphere. Acceptable values of the projected rotational velocity are normally less than or equal to 50 km s-1, which may also be a typical upper limit for the rotational velocity. Our best estimates for the projected rotational velocity are typically 10-20 km s-1 and hence compatible with this limit. These values are compared with those predicted by single star evolutionary models, which are initially rapidly rotating. It is concluded that either these models underestimate the rate of rotational breaking or some of the targets may be evolving through a blue loop or are binaries.
Resumo:
Boron abundances have been derived for seven main-sequence B- type stars from Hubble Space Telescope STIS spectra around the B III lambda2066 line. In two stars, boron appears to be undepleted with respect to the presumed initial abundance. In one star, boron is detectable but is clearly depleted. In the other four stars, boron is undetectable, implying depletions of 1-2 dex. Three of these four stars are nitrogen enriched, but the fourth shows no enrichment of nitrogen. Only rotationally induced mixing predicts that boron depletions are unaccompanied by nitrogen enrichments. The inferred rate of boron depletion from our observations is in good agreement with these predictions. Other boron-depleted nitrogen-normal stars are identified from the literature. In addition, several boron- depleted nitrogen-rich stars are identified, and while all fall on the boron-nitrogen trend predicted by rotationally induced mixing, a majority have nitrogen enrichments that are not uniquely explained by rotation. The spectra have also been used to determine iron group (Cr, Mn, Fe, and Ni) abundances. The seven B-type stars have near-solar iron group abundances, as expected for young stars in the solar neighborhood. We have also analyzed the halo B-type star PG 0832 + 676. We find [Fe/H] = -0.88 +/- 0.10, and the absence of the B III line gives the upper limit [B/H] <-2.5. These and other published abundances are used to infer the star's evolutionary status as a post-asymptotic giant branch star.
Resumo:
Experimental data are presented for the scattering of electrons by H2O between 17 and 250 meV impact energy. These results are used in conjunction with a generally applicable method, based on a quantum defect theory approach to electron-polar molecule collisions, to derive the first set of data for state-to-state rotationally inelastic scattering cross sections based on experimental values.