15 resultados para robust speaker verification


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Situational awareness is achieved naturally by the human senses of sight and hearing in combination. Automatic scene understanding aims at replicating this human ability using microphones and cameras in cooperation. In this paper, audio and video signals are fused and integrated at different levels of semantic abstractions. We detect and track a speaker who is relatively unconstrained, i.e., free to move indoors within an area larger than the comparable reported work, which is usually limited to round table meetings. The system is relatively simple: consisting of just 4 microphone pairs and a single camera. Results show that the overall multimodal tracker is more reliable than single modality systems, tolerating large occlusions and cross-talk. System evaluation is performed on both single and multi-modality tracking. The performance improvement given by the audio–video integration and fusion is quantified in terms of tracking precision and accuracy as well as speaker diarisation error rate and precision–recall (recognition). Improvements vs. the closest works are evaluated: 56% sound source localisation computational cost over an audio only system, 8% speaker diarisation error rate over an audio only speaker recognition unit and 36% on the precision–recall metric over an audio–video dominant speaker recognition method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel bolt-on module capable of boosting the robustness of various single compact 2D gait representations. Gait recognition is negatively influenced by covariate factors including clothing and time which alter the natural gait appearance and motion. Contrary to traditional gait recognition, our bolt-on module remedies this by a dedicated covariate factor detection and removal procedure which we quantitatively and qualitatively evaluate. The fundamental concept of the bolt-on module is founded on exploiting the pixel-wise composition of covariate factors. Results demonstrate how our bolt-on module is a powerful component leading to significant improvements across gait representations and datasets yielding state-of-the-art results.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we propose a biologically inspired appearance model for robust visual tracking. Motivated in part by the success of the hierarchical organization of the primary visual cortex (area V1), we establish an architecture consisting of five layers: whitening, rectification, normalization, coding and polling. The first three layers stem from the models developed for object recognition. In this paper, our attention focuses on the coding and pooling layers. In particular, we use a discriminative sparse coding method in the coding layer along with spatial pyramid representation in the pooling layer, which makes it easier to distinguish the target to be tracked from its background in the presence of appearance variations. An extensive experimental study shows that the proposed method has higher tracking accuracy than several state-of-the-art trackers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to track and verify the delivery of respiratory-gated irradiations, performed with three versions of TrueBeam linac, using a novel phantom arrangement that combined the OCTAVIUS® SRS 1000 array with a moving platform. The platform was programmed to generate sinusoidal motion of the array. This motion was tracked using the real-time position management (RPM) system and four amplitude gating options were employed to interrupt MV beam delivery when the platform was not located within set limits. Time-resolved spatial information extracted from analysis of x-ray fluences measured by the array was compared to the programmed motion of the platform and to the trace recorded by the RPM system during the delivery of the x-ray field. Temporal data recorded by the phantom and the RPM system were validated against trajectory log files, recorded by the linac during the irradiation, as well as oscilloscope waveforms recorded from the linac target signal. Gamma analysis was employed to compare time-integrated 2D x-ray dose fluences with theoretical fluences derived from the probability density function for each of the gating settings applied, where gamma criteria of 2%/2 mm, 1%/1 mm and 0.5%/0.5 mm were used to evaluate the limitations of the RPM system. Excellent agreement was observed in the analysis of spatial information extracted from the SRS 1000 array measurements. Comparisons of the average platform position with the expected position indicated absolute deviations of  <0.5 mm for all four gating settings. Differences were observed when comparing time-resolved beam-on data stored in the RPM files and trajectory logs to the true target signal waveforms. Trajectory log files underestimated the cycle time between consecutive beam-on windows by 10.0  ±  0.8 ms. All measured fluences achieved 100% pass-rates using gamma criteria of 2%/2 mm and 50% of the fluences achieved pass-rates  >90% when criteria of 0.5%/0.5 mm were used. Results using this novel phantom arrangement indicate that the RPM system is capable of accurately gating x-ray exposure during the delivery of a fixed-field treatment beam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robust joint modelling is an emerging field of research. Through the advancements in electronic patient healthcare records, the popularly of joint modelling approaches has grown rapidly in recent years providing simultaneous analysis of longitudinal and survival data. This research advances previous work through the development of a novel robust joint modelling methodology for one of the most common types of standard joint models, that which links a linear mixed model with a Cox proportional hazards model. Through t-distributional assumptions, longitudinal outliers are accommodated with their detrimental impact being down weighed and thus providing more efficient and reliable estimates. The robust joint modelling technique and its major benefits are showcased through the analysis of Northern Irish end stage renal disease patients. With an ageing population and growing prevalence of chronic kidney disease within the United Kingdom, there is a pressing demand to investigate the detrimental relationship between the changing haemoglobin levels of haemodialysis patients and their survival. As outliers within the NI renal data were found to have significantly worse survival, identification of outlying individuals through robust joint modelling may aid nephrologists to improve patient's survival. A simulation study was also undertaken to explore the difference between robust and standard joint models in the presence of increasing proportions and extremity of longitudinal outliers. More efficient and reliable estimates were obtained by robust joint models with increasing contrast between the robust and standard joint models when a greater proportion of more extreme outliers are present. Through illustration of the gains in efficiency and reliability of parameters when outliers exist, the potential of robust joint modelling is evident. The research presented in this thesis highlights the benefits and stresses the need to utilise a more robust approach to joint modelling in the presence of longitudinal outliers.

Relevância:

20.00% 20.00%

Publicador: