4 resultados para risk minimization
Resumo:
13.Vidovic M., Miljus M., Vlajic J., (2002), "Risk minimization in logistic processes with oil products", Proceedings of the 6th International Conference on Traffic Science, ICTS 2002, Portorož, Slovenia, pp. 568-577;
Resumo:
A new model to explain animal spacing, based on a trade-off between foraging efficiency and predation risk, is derived from biological principles. The model is able to explain not only the general tendency for animal groups to form, but some of the attributes of real groups. These include the independence of mean animal spacing from group population, the observed variation of animal spacing with resource availability and also with the probability of predation, and the decline in group stability with group size. The appearance of "neutral zones" within which animals are not motivated to adjust their relative positions is also explained. The model assumes that animals try to minimize a cost potential combining the loss of intake rate due to foraging interference and the risk from exposure to predators. The cost potential describes a hypothetical field giving rise to apparent attractive and repulsive forces between animals. Biologically based functions are given for the decline in interference cost and increase in the cost of predation risk with increasing animal separation. Predation risk is calculated from the probabilities of predator attack and predator detection as they vary with distance. Using example functions for these probabilities and foraging interference, we calculate the minimum cost potential for regular lattice arrangements of animals before generalizing to finite-sized groups and random arrangements of animals, showing optimal geometries in each case and describing how potentials vary with animal spacing. (C) 1999 Academic Press.</p>
Resumo:
This paper introduces the discrete choice model-paradigm of Random Regret Minimisation (RRM) to the field of health economics. The RRM is a regret-based model that explores a driver of choice different from the traditional utility-based Random Utility Maximisation (RUM). The RRM approach is based on the idea that, when choosing, individuals aim to minimise their regret–regret being defined as what one experiences when a non-chosen alternative in a choice set performs better than a chosen one in relation to one or more attributes. Analysing data from a discrete choice experiment on diet, physical activity and risk of a fatal heart attack in the next ten years administered to a sample of the Northern Ireland population, we find that the combined use of RUM and RRM models offer additional information, providing useful behavioural insights for better informed policy appraisal.
Resumo:
Background: High risk medications are commonly prescribed to older US patients. Currently, less is known about high risk medication prescribing in other Western Countries, including the UK. We measured trends and correlates of high risk medication prescribing in a subset of the older UK population (community/institutionalized) to inform harm minimization efforts. Methods: Three cross-sectional samples from primary care electronic clinical records (UK Clinical Practice Research Datalink, CPRD) in fiscal years 2003/04, 2007/08 and 2011/12 were taken. This yielded a sample of 13,900 people aged 65 years or over from 504 UK general practices. High risk medications were defined by 2012 Beers Criteria adapted for the UK. Using descriptive statistical methods and regression modelling, prevalence of ‘any’ (drugs prescribed at least once per year) and ‘long-term’ (drugs prescribed all quarters of year) high risk medication prescribing and correlates were determined. Results: While polypharmacy rates have risen sharply, high risk medication prevalence has remained stable across a decade. A third of older (65+) people are exposed to high risk medications, but only half of the total prevalence was long-term (any = 38.4 % [95 % CI: 36.3, 40.5]; long-term = 17.4 % [15.9, 19.9] in 2011/12). Long-term but not any high risk medication exposure was associated with older ages (85 years or over). Women and people with higher polypharmacy burden were at greater risk of exposure; lower socio-economic status was not associated. Ten drugs/drug classes accounted for most of high risk medication prescribing in 2011/12. Conclusions: High risk medication prescribing has not increased over time against a background of increasing polypharmacy in the UK. Half of patients receiving high risk medications do so for less than a year. Reducing or optimising the use of a limited number of drugs could dramatically reduce high risk medications in older people. Further research is needed to investigate why the oldest old and women are at greater risk. Interventions to reduce high risk medications may need to target shorter and long-term use separately.