61 resultados para rincon
Resumo:
Colour-based particle filters have been used exhaustively in the literature given rise to multiple applications However tracking coloured objects through time has an important drawback since the way in which the camera perceives the colour of the object can change Simple updates are often used to address this problem which imply a risk of distorting the model and losing the target In this paper a joint image characteristic-space tracking is proposed which updates the model simultaneously to the object location In order to avoid the curse of dimensionality a Rao-Blackwellised particle filter has been used Using this technique the hypotheses are evaluated depending on the difference between the model and the current target appearance during the updating stage Convincing results have been obtained in sequences under both sudden and gradual illumination condition changes Crown Copyright (C) 2010 Published by Elsevier B V All rights reserved
Resumo:
Gabor features have been recognized as one of the most successful face representations. Encouraged by the results given by this approach, other kind of facial representations based on Steerable Gaussian first order kernels and Harris corner detector are proposed in this paper. In order to reduce the high dimensional feature space, PCA and LDA techniques are employed. Once the features have been extracted, AdaBoost learning algorithm is used to select and combine the most representative features. The experimental results on XM2VTS database show an encouraging recognition rate, showing an important improvement with respect to face descriptors only based on Gabor filters.
Resumo:
We propose a complete application capable of tracking multiple objects in an environment monitored by multiple cameras. The system has been specially developed to be applied to sport games, and it has been evaluated in a real association-football stadium. Each target is tracked using a local importance-sampling particle filter in each camera, but the final estimation is made by combining information from the other cameras using a modified unscented Kalman filter algorithm. Multicamera integration enables us to compensate for bad measurements or occlusions in some cameras thanks to the other views it offers. The final algorithm results in a more accurate system with a lower failure rate. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3114605]
Resumo:
In this paper, we introduce an efficient method for particle selection in tracking objects in complex scenes. Firstly, we improve the proposal distribution function of the tracking algorithm, including current observation, reducing the cost of evaluating particles with a very low likelihood. In addition, we use a partitioned sampling approach to decompose the dynamic state in several stages. It enables to deal with high-dimensional states without an excessive computational cost. To represent the color distribution, the appearance of the tracked object is modelled by sampled pixels. Based on this representation, the probability of any observation is estimated using non-parametric techniques in color space. As a result, we obtain a Probability color Density Image (PDI) where each pixel points its membership to the target color model. In this way, the evaluation of all particles is accelerated by computing the likelihood p(z|x) using the Integral Image of the PDI.
Resumo:
Color segmentation of images usually requires a manual selection and classification of samples to train the system. This paper presents an automatic system that performs these tasks without the need of a long training, providing a useful tool to detect and identify figures. In real situations, it is necessary to repeat the training process if light conditions change, or if, in the same scenario, the colors of the figures and the background may have changed, being useful a fast training method. A direct application of this method is the detection and identification of football players.
Resumo:
We address the problem of non-linearity in 2D Shape modelling of a particular articulated object: the human body. This issue is partially resolved by applying a different Point Distribution Model (PDM) depending on the viewpoint. The remaining non-linearity is solved by using Gaussian Mixture Models (GMM). A dynamic-based clustering is proposed and carried out in the Pose Eigenspace. A fundamental question when clustering is to determine the optimal number of clusters. From our point of view, the main aspect to be evaluated is the mean gaussianity. This partitioning is then used to fit a GMM to each one of the view-based PDM, derived from a database of Silhouettes and Skeletons. Dynamic correspondences are then obtained between gaussian models of the 4 mixtures. Finally, we compare this approach with other two methods we previously developed to cope with non-linearity: Nearest Neighbor (NN) Classifier and Independent Component Analysis (ICA).
Resumo:
In human motion analysis, the joint estimation of appearance, body pose and location parameters is not always tractable due to its huge computational cost. In this paper, we propose a Rao-Blackwellized Particle Filter for addressing the problem of human pose estimation and tracking. The advantage of the proposed approach is that Rao-Blackwellization allows the state variables to be splitted into two sets, being one of them analytically calculated from the posterior probability of the remaining ones. This procedure reduces the dimensionality of the Particle Filter, thus requiring fewer particles to achieve a similar tracking performance. In this manner, location and size over the image are obtained stochastically using colour and motion clues, whereas body pose is solved analytically applying learned human Point Distribution Models.
Resumo:
We present a Spatio-temporal 2D Models Framework (STMF) for 2D-Pose tracking. Space and time are discretized and a mixture of probabilistic "local models" is learnt associating 2D Shapes and 2D Stick Figures. Those spatio-temporal models generalize well for a particular viewpoint and state of the tracked action but some spatio-temporal discontinuities can appear along a sequence, as a direct consequence of the discretization. To overcome the problem, we propose to apply a Rao-Blackwellized Particle Filter (RBPF) in the 2D-Pose eigenspace, thus interpolating unseen data between view-based clusters. The fitness to the images of the predicted 2D-Poses is evaluated combining our STMF with spatio-temporal constraints. A robust, fast and smooth human motion tracker is obtained by tracking only the few most important dimensions of the state space and by refining deterministically with our STMF.
Resumo:
In this paper, we present a Statistical Shape Model for Human Figure Segmentation in gait sequences. Point Distribution Models (PDM) generally use Principal Component analysis (PCA) to describe the main directions of variation in the training set. However, PCA assumes a number of restrictions on the data that do not always hold. In this work, we explore the potential of Independent Component Analysis (ICA) as an alternative shape decomposition to the PDM-based Human Figure Segmentation. The shape model obtained enables accurate estimation of human figures despite segmentation errors in the input silhouettes and has really good convergence qualities.
Resumo:
In this paper, we exploit the analogy between protein sequence alignment and image pair correspondence to design a bioinformatics-inspired framework for stereo matching based on dynamic programming. This approach also led to the creation of a meaningfulness graph, which helps to predict matching validity according to image overlap and pixel similarity. Finally, we propose an automatic procedure to estimate automatically all matching parameters. This work is evaluated qualitatively and quantitatively using a standard benchmarking dataset and by conducting stereo matching experiments between images captured at different resolutions. Results confirm the validity of the computer vision/bioinformatics analogy to develop a versatile and accurate low complexity stereo matching algorithm.
Resumo:
A novel non-linear dimensionality reduction method, called Temporal Laplacian Eigenmaps, is introduced to process efficiently time series data. In this embedded-based approach, temporal information is intrinsic to the objective function, which produces description of low dimensional spaces with time coherence between data points. Since the proposed scheme also includes bidirectional mapping between data and embedded spaces and automatic tuning of key parameters, it offers the same benefits as mapping-based approaches. Experiments on a couple of computer vision applications demonstrate the superiority of the new approach to other dimensionality reduction method in term of accuracy. Moreover, its lower computational cost and generalisation abilities suggest it is scalable to larger datasets. © 2010 IEEE.
Resumo:
In this paper, a novel framework for dense pixel matching based on dynamic programming is introduced. Unlike most techniques proposed in the literature, our approach assumes neither known camera geometry nor the availability of rectified images. Under such conditions, the matching task cannot be reduced to finding correspondences between a pair of scanlines. We propose to extend existing dynamic programming methodologies to a larger dimensional space by using a 3D scoring matrix so that correspondences between a line and a whole image can be calculated. After assessing our framework on a standard evaluation dataset of rectified stereo images, experiments are conducted on unrectified and non-linearly distorted images. Results validate our new approach and reveal the versatility of our algorithm.
Resumo:
In this paper we propose a statistical model for detection and tracking of human silhouette and the corresponding 3D skeletal structure in gait sequences. We follow a point distribution model (PDM) approach using a Principal Component Analysis (PCA). The problem of non-lineal PCA is partially resolved by applying a different PDM depending of pose estimation; frontal, lateral and diagonal, estimated by Fisher's linear discriminant. Additionally, the fitting is carried out by selecting the closest allowable shape from the training set by means of a nearest neighbor classifier. To improve the performance of the model we develop a human gait analysis to take into account temporal dynamic to track the human body. The incorporation of temporal constraints on the model increase reliability and robustness.