4 resultados para resuspension


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fate and cycling of two selected legacy persistent organic pollutants (POPs), PCB 153 and gamma-HCH, in the North Sea in the 21st century have been modelled with combined hydrodynamic and fate and transport ocean models
(HAMSOM and FANTOM, respectively). To investigate the impact of climate variability on POPs in the North Sea in the 21st century, future scenario model runs for three 10-year periods to the year 2100 using plausible levels of both in
situ concentrations and atmospheric, river and open boundary inputs are performed. This slice mode under a moderate scenario (A1B) is sufficient to provide a basis for further analysis. For the HAMSOM and atmospheric forcing, results of the IPCC A1B (SRES) 21st century scenario are utilized, where surface forcing is provided by the REMO downscaling of the ECHAM5 global atmospheric model, and open boundary conditions are provided by the MPIOM global ocean model.
Dry gas deposition and volatilization of gamma-HCH increase in the future relative to the present by up to 20% (in the spring and summer months for deposition and in summer for volatilization). In the water column, total mass of
gamma-HCH and PCB 153 remain fairly steady in all three runs. In sediment,
gamma-HCH increases in the future runs, relative to the present, while PCB 153 in sediment decreases exponentially in all three runs, but even faster in the future, due to the increased number of storms, increased duration of gale wind conditions and increased water and air temperatures, all of which are the result of climate change. Annual net sinks exceed sources at the ends of all periods.
Overall, the model results indicate that the climate change scenarios considered here generally have a negligible influence on the simulated fate and transport of the two POPs in the North Sea, although the increased number and magnitude of storms in the 21st century will result in POP resuspension and ensuing revolatilization events. Trends in emissions from primary and secondary sources will remain the key driver of levels of these contaminants over time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants that have been in use since the 1970s. They are included in the list of hazardous substances known as persistent organic pollutants (POPs) because they are extremely hazardous to the environment and human health. PBDEs have been extensively used in industry and manufacturing in Taiwan, thus its citizens are at high risk of exposure to these chemicals.
An assessment of the environmental fate of these compounds in the Zhuoshui river and Changhua County regions of western Taiwan, and also including the adjacent area of the Taiwan Strait, was conducted for three high risk congeners, BDE-47, -99 and -209, to obtain information regarding the partitioning, advection, transfer and long range transport potential of the PBDEs in order to identify the level of risk posed by the pollutants in this region.
The results indicate that large amounts of PBDEs presently reside in all model compartments – air, soil, water, and sediment – with particularly high levels found in air and especially in sediment. The high levels found in sediment, particularly for BDE-209, are significant, since there is the threat of these pollutants entering the food chain, either directly through benthic feeding, or through resuspension and subsequent feeding in the pelagic region of the water column which is a distinct possibility in the strong currents found within the Taiwan Strait. Another important result is that a substantial portion of emissions leave the model domain directly through advection, particularly for BDE-47 (58%) and BDE-209 (75%), thus posing a risk to adjacent communities.
Model results were generally in reasonable agreement with available measured concentrations. In air, model concentrations are in reasonably good agreement with available measured values. For both BDE-47 and -99, model concentrations are a factor of 2-3 higher and BDE-209 within the range of measured values. In soil, model results are somewhat less than measured values. In sediment, model results are at the high end of measured values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The environmental fate of polybrominated diphenyl ethers (PBDEs), a group of flame retardants that are considered to be persistent organic pollutants (POPs), around the Zhuoshui River and Changhua County regions of Taiwan was assessed. An investigation into emissions, partitioning, and fate of selected PBDEs was conducted based on the equilibrium constant (EQC) fugacity model developed at Trent University, Canada. Emissions for congeners PBDE 47, PBDE 99, and PBDE 209 to air (4.9–92 × 10−3 kg/h), soil (0.91–17.4 × 10−3 kg/h), and water (0.21–4.04 × 10−3 kg/h), were estimated by modifying previous models on PBDE emission rates by considering both industrial and domestic rates. It was found that fugacity modeling can give a reasonable estimation of the behavior, partitioning, and concentrations of PBDE congeners in and around Taiwan. Results indicate that PBDE congeners have a high affinity for partitioning into sediments then soils. As congener number decreases, the PBDEs then partition more readily into air. As the degree of bromination increases, congeners more readily partition to sediments. Sediments may then act as a long-term source of PBDEs which can be released back into the water column due to resuspension during storm events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most models of riverine eco-hydrology and biogeochemistry rely upon bulk parameterization of fluxes. However, the transport and retention of carbon and nutrients in headwater streams is strongly influenced by biofilms (surface-attached microbial communities), which results in strong feedbacks between stream hydrodynamics and biogeochemistry. Mechanistic understanding of the interactions between streambed biofilms and nutrient dynamics is lacking. Here we present experimental results linking microscale observations of biofilm community structure to the deposition and resuspension of clay-sized mineral particles in streams. Biofilms were grown in identical 3 m recirculating flumes over periods of 14-50 days. Fluorescent particles were introduced to each flume, and their deposition was traced over 30 minutes. Particle resuspension from the biofilms was then observed under an increased stream flow, mimicking a flood event. We quantified particle fluxes using flow cytometry and epifluorescence microscopy. We directly observed particle adhesion to the biofilm using a confocal laser scanning microscope. 3-D Optical Coherence Tomography was used to determine biofilm roughness, areal coverage and void space in each flume. These measurements allow us to link biofilm complexity to particle retention during both baseflow and floodflow. The results suggest that increased biofilm complexity favors deposition and retention of fine particles in streams.