3 resultados para respiratory system
Resumo:
Objective There is limited evidence regarding the quality of prescribing for children in primary care. Several prescribing criteria (indicators) have been developed to assess the appropriateness of prescribing in older and middle-aged adults but few are relevant to children. The objective of this study was to develop a set of prescribing indicators that can be applied to prescribing or dispensing data sets to determine the prevalence of potentially inappropriate prescribing in children (PIPc) in primary care settings.
Design Two-round modified Delphi consensus method.
Setting Irish and UK general practice.
Participants A project steering group consisting of academic and clinical general practitioners (GPs) and pharmacists was formed to develop a list of indicators from literature review and clinical expertise. 15 experts consisting of GPs, pharmacists and paediatricians from the Republic of Ireland and the UK formed the Delphi panel.
Results 47 indicators were reviewed by the project steering group and 16 were presented to the Delphi panel. In the first round of this exercise, consensus was achieved on nine of these indicators. Of the remaining seven indicators, two were removed following review of expert panel comments and discussion of the project steering group. The second round of the Delphi process focused on the remaining five indicators, which were amended based on first round feedback. Three indicators were accepted following the second round of the Delphi process and the remaining two indicators were removed. The final list consisted of 12 indicators categorised by respiratory system (n=6), gastrointestinal system (n=2), neurological system (n=2) and dermatological system (n=2).
Conclusions The PIPc indicators are a set of prescribing criteria developed for use in children in primary care in the absence of clinical information. The utility of these criteria will be tested in further studies using prescribing databases.
Resumo:
The aim of this work was to track and verify the delivery of respiratory-gated irradiations, performed with three versions of TrueBeam linac, using a novel phantom arrangement that combined the OCTAVIUS® SRS 1000 array with a moving platform. The platform was programmed to generate sinusoidal motion of the array. This motion was tracked using the real-time position management (RPM) system and four amplitude gating options were employed to interrupt MV beam delivery when the platform was not located within set limits. Time-resolved spatial information extracted from analysis of x-ray fluences measured by the array was compared to the programmed motion of the platform and to the trace recorded by the RPM system during the delivery of the x-ray field. Temporal data recorded by the phantom and the RPM system were validated against trajectory log files, recorded by the linac during the irradiation, as well as oscilloscope waveforms recorded from the linac target signal. Gamma analysis was employed to compare time-integrated 2D x-ray dose fluences with theoretical fluences derived from the probability density function for each of the gating settings applied, where gamma criteria of 2%/2 mm, 1%/1 mm and 0.5%/0.5 mm were used to evaluate the limitations of the RPM system. Excellent agreement was observed in the analysis of spatial information extracted from the SRS 1000 array measurements. Comparisons of the average platform position with the expected position indicated absolute deviations of <0.5 mm for all four gating settings. Differences were observed when comparing time-resolved beam-on data stored in the RPM files and trajectory logs to the true target signal waveforms. Trajectory log files underestimated the cycle time between consecutive beam-on windows by 10.0 ± 0.8 ms. All measured fluences achieved 100% pass-rates using gamma criteria of 2%/2 mm and 50% of the fluences achieved pass-rates >90% when criteria of 0.5%/0.5 mm were used. Results using this novel phantom arrangement indicate that the RPM system is capable of accurately gating x-ray exposure during the delivery of a fixed-field treatment beam.