6 resultados para resistance of plant


Relevância:

100.00% 100.00%

Publicador:

Resumo:

SIMP steel was newly developed as a candidate structural material for the accelerator driven subcritical system. The serious decarburization of SIMP steel because of the high Si content was used to successfully form a self-growing TiC coating on the surface, after the Ti deposition as a first step. This TiC layer can effectively protect the surface from the static liquid lead-bismuth eutectic (LBE) corrosion at 600 °C up to 2000 h in the low oxygen LBE. However, in the oxygen saturated LBE, the TiC coating is oxidized into porous TiO2 after only 500 h and fails to protect. Therefore, the self-growing TiC coating is desired only when the oxygen content of LBE is strictly controlled on a low level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparing the chloride ingress between tradition concretes and AASCs is worthwhile to prove the possibility of increasing concrete lifetime in proximity to sea and deciding while such concretes are practical for use. Findings show that compared to the PC concretes, the AAS concretes have lower rate of chloride ingress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT

One of the binder systems with low environmental footprint is alkali activated slag concretes (AASC), made by adding alkalis such as sodium hydroxide and sodium silicate to industrial by-products such as ground granulated blast furnace slag (GGBS). Whilst they have the similar behaviour as that of traditional cement systems in terms of strength and structural behaviour, AASC do exhibit superior performance in terms of abrasion and acid resistance and fire protection.
In this article, the authors focus their attention on chloride ingress into different grades of AASC. The mix variables in AASC included water-to-binder, binder to aggregate ratio, percentage of alkali and the SiO2/Na2O ratio (silica modulus, Ms). The first challenge is to get mixes for different range of workability (with slump values from 40mm to 240mm) and reasonable early age and long term compressive strength according to each one. Then the chloride diffusion and migration in those mixes were measured and compared with same normal concretes in the existed literature based on chloride penetration depth. Comparing the chloride ingress between tradition concretes and AASCs is worthwhile to prove the possibility of increasing concrete lifetime in proximity to sea and deciding while such concretes are practical for use. Findings show that compared to the PC concretes, the AAS concretes have lower rate of chloride ingress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: Researchers are focusing their attention on alternative binder systems using 100% supplementary cementitious materials as it allows better control over the microstructure formation and low to moderate environmental footprint. One such system being considered is alkali activated slag concretes (AASC), made by adding alkalis such as sodium hydroxide and sodium silicate to ground granulated blast furnace slag (GGBS). Whilst they have a similar behaviour as that of traditional cement systems in terms of strength and structural behaviour, AASC are reported to exhibit superior performance in terms of abrasion,acid resistance and fire protection.
In this article, the authors investigate chloride ingress into different grades of AASC. The mix variables in AASC included water to binder, and binder to aggregate ratio, percentage of alkali and the SiO2/Na2O ratio (silica modulus, Ms). The first challenge was to develop mixes for different range of workability (with slump values from 40mm to 240mm) and reasonable early age and long term compressive strength. Further chloride ingress into those mixes were assessed and compared with the data from normal concretes based on literature. Findings show that compared to the PC concretes, the AAS concretes have lower rate of chloride ingress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The consequence of sulfate attack on geopolymer concrete, made from an alkali activated natural pozzolan (AANP) has been studied in this paper. Changes in the compressive strength, expansion and capillary water absorption of specimens have been investigated combined with phases determination by means of X-ray diffraction. At the end of present investigation which was to evaluate the performance of natural alumina silica based geopolymer concrete in sodium and magnesium sulfate solution, the loss of compressive strength and percentage of expansion of AANP concrete was recorded up to 19.4% and 0.074, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To minimize the side effects and the multidrug resistance (MDR) arising from daunorubicin (DNR) treatment of malignant lymphoma, a chemotherapy formulation of cysteamine-modified cadmium tellurium (Cys-CdTe) quantum dots coloaded with DNR and gambogic acid (GA) nanoparticles (DNR-GA-Cys-CdTe NPs) was developed. The physical property, drug-loading efficiency and drug release behavior of these DNR-GA-Cys-CdTe NPs were evaluated, and their cytotoxicity was explored by 3-[4,5-dimethylthiazol-2-y1]-2,5-diphenyltetrazolium bromide assay. These DNR-GA-Cys-CdTe NPs possessed a pH-responsive behavior, and displayed a dose-dependent antiproliferative activity on multidrug-resistant lymphoma Raji/DNR cells. The accumulation of DNR inside the cells, revealed by flow cytometry assay, and the down-regulated expression of P-glycoprotein inside the Raji/DNR cells measured by Western blotting assay indicated that these DNR-GA-Cys-CdTe NPs could minimize the MDR of Raji/DNR cells. This multidrug delivery system would be a promising strategy for minimizing MDR against the lymphoma.