70 resultados para representation theorems
Resumo:
The success postulate in belief revision ensures that new evidence (input) is always trusted. However, admitting uncertain input has been questioned by many researchers. Darwiche and Pearl argued that strengths of evidence should be introduced to determine the outcome of belief change, and provided a preliminary definition towards this thought. In this paper, we start with Darwiche and Pearl’s idea aiming to develop a framework that can capture the influence of the strengths of inputs with some rational assumptions. To achieve this, we first define epistemic states to represent beliefs attached with strength, and then present a set of postulates to describe the change process on epistemic states that is determined by the strengths of input and establish representation theorems to characterize these postulates. As a result, we obtain a unique rewarding operator which is proved to be a merging operator that is in line with many other works. We also investigate existing postulates on belief merging and compare them with our postulates. In addition, we show that from an epistemic state, a corresponding ordinal conditional function by Spohn can be derived and the result of combining two epistemic states is thus reduced to the result of combining two corresponding ordinal conditional functions proposed by Laverny and Lang. Furthermore, when reduced to the belief revision situation, we prove that our results induce all the Darwiche and Pearl’s postulates as well as the Recalcitrance postulate and the Independence postulate.
Resumo:
Belief revision performs belief change on an agent’s beliefs when new evidence (either of the form of a propositional formula or of the form of a total pre-order on a set of interpretations) is received. Jeffrey’s rule is commonly used for revising probabilistic epistemic states when new information is probabilistically uncertain. In this paper, we propose a general epistemic revision framework where new evidence is of the form of a partial epistemic state. Our framework extends Jeffrey’s rule with uncertain inputs and covers well-known existing frameworks such as ordinal conditional function (OCF) or possibility theory. We then define a set of postulates that such revision operators shall satisfy and establish representation theorems to characterize those postulates. We show that these postulates reveal common characteristics of various existing revision strategies and are satisfied by OCF conditionalization, Jeffrey’s rule of conditioning and possibility conditionalization. Furthermore, when reducing to the belief revision situation, our postulates can induce Darwiche and Pearl’s postulates C1 and C2.
Resumo:
We present a general method to undertake a thorough analysis of the thermodynamics of the quantum jump trajectories followed by an arbitrary quantum harmonic network undergoing linear and bilinear dynamics. The approach is based on the phase-space representation of the state of a harmonic network. The large deviation function associated with this system encodes the full counting statistics of exchange and also allows one to deduce for fluctuation theorems obeyed by the dynamics. We illustrate the method showing the validity of a local fluctuation theorem about the exchange of excitations between a restricted part of the environment (i.e., a local bath) and a harmonic network coupled with different schemes.
Resumo:
This article discusses women’s political representation in Central and Eastern Europe in the fifteen years after the fall of the Berlin Wall and the adoption of liberal democratic political systems in the region. It highlights the deepseated gender stereotypes that define women primarily as wives and mothers, with electoral politics seen as an appropriate activity for men, but less so for women. The article explores the ways in which conservative attitudes on gender roles hinders the supply of, and demand for, women in the politics of Central and Eastern Europe. It also discusses the manner in which the internalisation of traditional gender norms affects women’s parliamentary behaviour, as few champion women’s rights in the legislatures of the region. The article also finds that links between women MPs and women’s organisations are weak and fragmented, making coalition-building around agendas for women’s rights problematic.
Resumo:
Quantum teleportation for continuous variables is generally described in phase space by using the Wigner functions. We study quantum teleportation via a mixed two-mode squeezed state in Hilbert-Schmidt space by using the coherent-state representation and operators. This shows directly how the teleported state is related to the original state.
Resumo:
We say that the Peano theorem holds for a topological vector space $E$ if, for any continuous mapping $f : {\Bbb R}\times E \to E$ and any $(t(0), x(0))$ is an element of ${\Bbb R}\times E$, the Cauchy problem $\dot x(t) = f(t,x(t))$, $x(t(0)) = x(0)$, has a solution in some neighborhood of $t(0)$. We say that the weak version of Peano theorem holds for $E$ if, for any continuous map $f : {\Bbb R}\times E \to E$, the equation $\dot x(t) = f (t, x(t))$ has a solution on some interval. We construct an example (answering a question posed by S. G. Lobanov) of a Hausdorff locally convex topological vector space E for which the weak version of Peano theorem holds and the Peano theorem fails to hold. We also construct a Hausdorff locally convex topological vector space E for which the Peano theorem holds and any barrel in E is neither compact nor sequentially compact.