78 resultados para repeat procedure
Resumo:
BACKGROUND:
It is compulsory that domestic football/soccer teams in UEFA competitions organise players' pre-participation medicals. Although screening guidelines have been established, these remain controversial. The findings of medical examinations can have lasting consequences for athletes and doctors. No previous studies have reported UEFA pre-participation screening results in semi-professional footballers. This study aims to further knowledge regarding 'normal' data in this population.
METHOD:
Retrospective audit and analysis of records of pre-season medicals for all male first-team players at one semi-professional Northern Ireland Premiership team between 2009-2012. Medicals were conducted by the club doctor following the UEFA proforma. Height, weight, blood pressure (BP), full blood count (FBC), dipstick urinalysis and resting electrocardiogram (ECG) were conducted by an independent nurse. Only one ECG must be documented during a player's career; other tests are repeated yearly.
RESULTS:
89 medicals from 47 players (6 goalkeepers, 11 defenders, 22 midfielders and 8 attackers; mean age 25.0 years (SD 4.86)) were reviewed. Mean height of the players was 179.3 cm (SD 5.90) with a mean weight of 77.6 kg (SD 10.5). Of 89 urine dipsticks, 7 were positive for protein; all 7 were normal on repeat testing following 48 hours of rest. Of 40 ECGs (mean ventricular rate 61.2 bpm (SD 11.6)), one was referred to cardiology (right bundle branch block; prolonged Q-T interval). No players were excluded from participation.
CONCLUSIONS:
This study provides important information about 'normal' values in a population of semi-professional footballers. Urinalysis showing protein is not uncommon but is likely to be normal on repeat testing.
Resumo:
Expansion of trinucleotide repeat DNA of the classes CAG�·CTG, CGG�·CCG and GAA�·TTC are found to be associated with several neurodegenerative disorders. Different mechanisms have been attributed to the expansion of triplets, mainly involving the formation of alternate secondary structures by such repeats. This paper reports the molecular dynamics simulation of triplet repeat DNA sequences to study the basic structural features of DNA that are responsible for the formation of structures such as hairpins and slip-strand DNA leading to expansion. All the triplet repeat sequences studied were found to be more flexible compared to the control sequence unassociated with disease. Moreover, flexibility was found to be in the order CAG�·CTG > CGG�·CCG = GAA�·TTC, the highly flexible CAG�·CTG repeat being the most common cause of neurodegenerative disorders. In another simulation, a single G�·C to T�·A mutation at the 9th position of the CAG�·CTG repeat exhibited a reduction in bending compared to the pure 15-mer CAGâ�¢CTG repeat. EPM1 dodecamer repeat associated with the pathogenesis of progressive myoclonus epilepsy was also simulated and showed flexible nature suggesting a similar expansion mechanism.
Resumo:
Impatiens glandulifera (Himalayan balsam) is an invasive riparian plant species that can outcompete native perennials. Population genetic data on dispersal may aid in the management of invasive species, so we have developed microsatellite markers for this significant invader using an intersimple sequence repeat (ISSR)-based cloning method. Eight polymorphic markers displayed between two and five alleles, with overall levels of observed and expected heterozygosities ranging from 0.0500 to 0.7500 and from 0.1449 to 0.7692, respectively.
Resumo:
Both substituted imidazoles and 1,3-dialkylimidazolium salts can be fully deuteriated on the heterocyclic ring using D2O over heterogeneous Pd catalysts: deuteriated 1-alkyl-3-methylimidazolium chloride and hexafluorophosphate ionic liquids can also be prepared in good yields utilising readily available and relatively low cost sources of deuterium.
Resumo:
Incoherent Thomson scattering (ITS) provides a nonintrusive diagnostic for the determination of one-dimensional (1D) electron velocity distribution in plasmas. When the ITS spectrum is Gaussian its interpretation as a three-dimensional (3D) Maxwellian velocity distribution is straightforward. For more complex ITS line shapes derivation of the corresponding 3D velocity distribution and electron energy probability distribution function is more difficult. This article reviews current techniques and proposes an approach to making the transformation between a 1D velocity distribution and the corresponding 3D energy distribution. Previous approaches have either transformed the ITS spectra directly from a 1D distribution to a 3D or fitted two Gaussians assuming a Maxwellian or bi-Maxwellian distribution. Here, the measured ITS spectrum transformed into a 1D velocity distribution and the probability of finding a particle with speed within 0 and given value v is calculated. The differentiation of this probability function is shown to be the normalized electron velocity distribution function. (C) 2003 American Institute of Physics.