9 resultados para renewable energy production


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental friendly renewable energy plays an indispensable role in energy industry development. Foreign direct investment (FDI) in advanced renewable energy technology spillover is promising to improve technological capability and promote China’s energy industry performance growth. In this paper, the impacts of FDI renewable energy technology spillover on China’s energy industry performance are analyzed based on theoretical and empirical studies. Firstly, three hypotheses are proposed to illustrate the relationships between FDI renewable energy technology spillover and three energy industry performances including economic, environmental, and innovative performances. To verify the hypotheses, techniques including factor analysis and data envelopment analysis (DEA) are employed to quantify the FDI renewable energy technology spillover and the energy industry performance of China, respectively. Furthermore, a panel data regression model is proposed to measure the impacts of FDI renewable energy technology spillover on China’s energy industry performance. Finally, energy industries of 30 different provinces in China based on the yearbook data from 2005 to 2011 are comparatively analyzed for evaluating the impacts through the empirical research. The results demonstrate that FDI renewable energy technology spillover has positive impacts on China’s energy industry performance. It can also be found that the technology spillover effects are more obvious in economic and technological developed regions. Finally, four suggestions are provided to enhance energy industry performance and promote renewable energy technology spillover in China.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a model for availability analysis of standalone hybrid microgrid. The microgrid used in the study consists of wind, solar storage and diesel generator. Boolean driven Markov process is used to develop the availability of the system in the proposed method. By modifying the developed model, the relationship between the availability of the system with the fine (normal) weather and disturbed (stormy) weather durations are analyzed. Effects of different converter technologies on the availability of standalone microgrid were investigated and the results have shown that the availability of microgrid increased by 5.80 % when a storage system is added. On the other hand, the availability of standalone microgrid could be overestimated by 3.56 % when weather factor is neglected. In the same way 200, 500 and 1000 hours of disturbed weather durations reduced the availability of the system by 5.36%, 9.73% and 13.05 %, respectively. In addition, the hybrid energy storage cascade topology with a capacitor in the middle maximized the system availability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Algae biodiesel is a promising but expensive alternative fuel to petro-diesel. To overcome cost barriers, detailed cost analyses are needed. A decade-old cost analysis by the U.S. National Renewable Energy Laboratory indicated that the costs of algae biodiesel were in the range of $0.53–0.85/L (2012 USD values). However, the cost of land and transesterification were just roughly estimated. In this study, an updated comprehensive techno-economic analysis was conducted with optimized processes and improved cost estimations. Latest process improvement, quotes from vendors, government databases, and other relevant data sources were used to calculate the updated algal biodiesel costs, and the final costs of biodiesel are in the range of $0.42–0.97/L. Additional improvements on cost-effective biodiesel production around the globe to cultivate algae was also recommended. Overall, the calculated costs seem promising, suggesting that a single step biodiesel production process is close to commercial reality.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Studies have shown that large geographical spreading can reduce the wind power variability and smooth production. It is frequently assumed that storage and interconnection can manage wind power variability and are totally flexible. However, constraints do exist. In the future more and more electricity will be provided by renewable energy sources and more electricity interconnectors will be built between European Union (EU) countries, as outlines in many of the Projects of Common Interests. It is essential to understand the correlation of wind generation throughout Europe considering power system constraints. In this study the spatial and temporal correlation of wind power production across several countries is examined in order to understand how “the wind ‘travels’ across Europe”. Three years of historical hourly wind power generation from ten EU countries is analysed to investigate the geographic diversity and time scales influence on correlation of wind power variations. Results are then compared with two other studies and show similar general characteristics of correlation between EU country pairs to identify opportunities for storage optimisation, power system operations, and trading.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As the largest contributor to renewable energy, biomass (especially lignocellulosic biomass) has significant potential to address atmospheric emission and energy shortage issues. The bio-fuels derived from lignocellulosic biomass are popularly referred to as second-generation bio-fuels. To date, several thermochemical conversion pathways for the production of second-generation bio-fuels have shown commercial promise; however, most of these remain at various pre-commercial stages. In view of their imminent commercialization, it is important to conduct a profound and comprehensive comparison of these production techniques. Accordingly, the scope of this review is to fill this essential knowledge gap by mapping the entire value chain of second-generation bio-fuels, from technical, economic, and environmental perspectives. This value chain covers i) the thermochemical technologies used to convert solid biomass feedstock into easier-to-handle intermediates, such as bio-oil, syngas, methanol, and Fischer-Tropsch fuel; and ii) the upgrading technologies used to convert intermediates into end products, including diesel, gasoline, renewable jet fuels, hydrogen, char, olefins, and oxygenated compounds. This review also provides an economic and commercial assessment of these technologies, with the aim of identifying the most adaptable technology for the production of bio-fuels, fuel additives, and bio-chemicals. A detailed mapping of the carbon footprints of the various thermochemical routes to second-generation bio-fuels is also carried out. The review concludes by identifying key challenges and future trends for second-generation petroleum substitute bio-fuels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The transition to a “low carbon, climate resilient and environmentally sustainable economy by the end of the 
year 2050” has been conceptualised as the “national transition objective” in the Irish Climate Action and Low Carbon Development Bill, passed in late 2015. This has raised a myriad of questions over how this can be operationalised and resourced and whether it can maintain political momentum. This paper assesses the utility of framings informed by the transitions (MLP) and technological innovation systems perspectives in contributing to transformative societal processes, by examining their application in an Irish case study on policy and technology. Through a qualitative exploration of the broader societal and policy context of the energy sector and a more detailed examination of the innovation systems of selected niche technologies (bioenergy and electric vehicles), the Irish case study sought to identify potential catalysts for a sustainability transition in the energy sector in Ireland: where these exist, how these are being built or enabled, and barriers to change. Following a discussion on the theoretical approaches used, a description will be given of how these were applied in the conducting of the research on transition in Ireland case study and the key findings which emerged. A critical reflection will then be made on the utility of these perspectives (as applied) to contribute to broader processes of societal transformation in Ireland.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The challenges of a low carbon energy transition have now been recognized by most nation states, each of whom have responded with differing visions, strategies and programmes, with variable veracity and effectiveness. Given the complexity of each country’s energy system (and sub-systems such as mobility, food etc), the differing sources and wealth of indigenous energy resources, the variable legacy of the fossil fuel regime and differing capacity to respond to global shifts in energy markets, it is clear that each country will respond to this challenge in very different ways.
This poses difficulties for understanding the extent to which a transition may be taking hold in any territory as simple indicators such as GHG emission data or increases in renewable energy ignore the complex contexts in which transitions take place. Drawing on the results of a study, funded by the Irish Environmental Protection Agency (Characterizing and Catalyzing Transitions) and using the wider theoretical framework of socio-technological transitions, this paper will explore the challenges, virtues and constraints of attempting to ‘benchmark’ the Republic of Ireland’s transition. This will lead to wider observations on the normative nature of benchmarking and a critical review of how we conceptualize the very idea of transition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a study on the implementation of Real-Time Pricing (RTP) based Demand Side Management (DSM) of water pumping at a clean water pumping station in Northern Ireland, with the intention of minimising electricity costs and maximising the usage of electricity from wind generation. A Genetic Algorithm (GA) was used to create pumping schedules based on system constraints and electricity tariff scenarios. Implementation of this method would allow the water network operator to make significant savings on electricity costs while also helping to mitigate the variability of wind generation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a study on the implementation of Real-Time Pricing (RTP) based Demand Side Management (DSM) of water pumping at a clean water pumping station in Northern Ireland, with the intention of minimising electricity costs and maximising the usage of electricity from wind generation. A Genetic Algorithm (GA) was used to create pumping schedules based on system constraints and electricity tariff scenarios. Implementation of this method would allow the water network operator to make significant savings on electricity costs while also helping to mitigate the variability of wind generation.