196 resultados para regional feature
Resumo:
Objective
Pedestrian detection under video surveillance systems has always been a hot topic in computer vision research. These systems are widely used in train stations, airports, large commercial plazas, and other public places. However, pedestrian detection remains difficult because of complex backgrounds. Given its development in recent years, the visual attention mechanism has attracted increasing attention in object detection and tracking research, and previous studies have achieved substantial progress and breakthroughs. We propose a novel pedestrian detection method based on the semantic features under the visual attention mechanism.
Method
The proposed semantic feature-based visual attention model is a spatial-temporal model that consists of two parts: the static visual attention model and the motion visual attention model. The static visual attention model in the spatial domain is constructed by combining bottom-up with top-down attention guidance. Based on the characteristics of pedestrians, the bottom-up visual attention model of Itti is improved by intensifying the orientation vectors of elementary visual features to make the visual saliency map suitable for pedestrian detection. In terms of pedestrian attributes, skin color is selected as a semantic feature for pedestrian detection. The regional and Gaussian models are adopted to construct the skin color model. Skin feature-based visual attention guidance is then proposed to complete the top-down process. The bottom-up and top-down visual attentions are linearly combined using the proper weights obtained from experiments to construct the static visual attention model in the spatial domain. The spatial-temporal visual attention model is then constructed via the motion features in the temporal domain. Based on the static visual attention model in the spatial domain, the frame difference method is combined with optical flowing to detect motion vectors. Filtering is applied to process the field of motion vectors. The saliency of motion vectors can be evaluated via motion entropy to make the selected motion feature more suitable for the spatial-temporal visual attention model.
Result
Standard datasets and practical videos are selected for the experiments. The experiments are performed on a MATLAB R2012a platform. The experimental results show that our spatial-temporal visual attention model demonstrates favorable robustness under various scenes, including indoor train station surveillance videos and outdoor scenes with swaying leaves. Our proposed model outperforms the visual attention model of Itti, the graph-based visual saliency model, the phase spectrum of quaternion Fourier transform model, and the motion channel model of Liu in terms of pedestrian detection. The proposed model achieves a 93% accuracy rate on the test video.
Conclusion
This paper proposes a novel pedestrian method based on the visual attention mechanism. A spatial-temporal visual attention model that uses low-level and semantic features is proposed to calculate the saliency map. Based on this model, the pedestrian targets can be detected through focus of attention shifts. The experimental results verify the effectiveness of the proposed attention model for detecting pedestrians.
Resumo:
The Celtic, Regional and Minority Languages Abroad
Project (CRAMLAP) is funded by the European Commission
to research the provision and pedagogy of regional
and minority languages outside their national borders in
Europe. The teaching of Celtic languages across Europe
was the focus in year one (2003-2004). This article summarizes
the qualitative data received in response to
questionnaires sent to institutions across Europe offering
Celtic Studies. Responses indicated that Celtic Studies
are quite widely available across Europe. The languages
are taught in comparative linguistics, linguistics and English
departments, with few dedicated Celtic departments
or sections outside the Celtic countries. Irish is supported
abroad by Irish government grant aid which will
become more widely available in the immediate future.
Many of the teachers have considerable experience, but
limited pedagogic training. The lack of suitable teaching
resources is the most commonly expressed concern.
Resumo:
Cross-border (North/South) co-operation between the Republic of Ireland and Northern Ireland was an indelible feature of the form of governance provided by the Belfast Good Friday Agreement (1998). Previous efforts to establish North/South co-operation had all foundered but the establishment and initial operation of the Agreement's cross-border institutions proved to be uncontroversial. However, during its implementation, other areas of the Agreement gave Ulster unionists more pressing cause for concern. These areas of concern included the release of paramilitary prisoners, police reform, the 'decommissioning' of Irish Republican Army (IRA) weaponry, and the unionist perception that the 'Britishness of Northern Ireland' was being actively eroded. These concerns served to emphasise and strengthen political and cultural borders between communities at a regional and local level within Northern Ireland. They also threatened the pro-Agreement unionists' contestation of unionist ideological orthodoxy, a contestation that was undertaken in an attempt to adapt the Ulster unionist identity to the shifting thresholds of the state.
Resumo:
Aims/hypothesis: We investigated the association between the incidence of type 1 diabetes mellitus and remoteness (a proxy measure for exposure to infections) using recently developed techniques for statistical analysis of small-area data.
Subjects, materials and methods: New cases in children aged 0 to 14 years in Northern Ireland were prospectively registered from 1989 to 2003. Ecological analysis was conducted using small geographical units (582 electoral wards) and area characteristics including remoteness, deprivation and child population density. Analysis was conducted using Poisson regression models and Bayesian
hierarchical models to allow for spatially correlated risks that were potentially caused by unmeasured explanatory variables.
Results: In Northern Ireland between 1989 and 2003, there were 1,433 new cases of type 1 diabetes, giving a directly standardised incidence rate of 24.7 per 100,000 personyears. Areas in the most remote fifth of all areas had a significantly (p=0.0006) higher incidence of type 1 diabetes mellitus (incidence rate ratio=1.27 [95% CI 1.07, 1.50]) than those in the most accessible fifth of all areas. There was also a higher incidence rate in areas that were less deprived (p<0.0001) and less densely populated (p=0.002). After adjustment for deprivation and additional adjustment for child population density the association between diabetes and remoteness remained significant (p=0.01 and p=0.03, respectively).
Conclusions/interpretation: In Northern Ireland, there is evidence that remote areas experience higher rates of type 1 diabetes mellitus. This could reflect a reduced or delayed exposure to infections, particularly early in life, in these areas.
Resumo:
This paper provides a summary of our studies on robust speech recognition based on a new statistical approach – the probabilistic union model. We consider speech recognition given that part of the acoustic features may be corrupted by noise. The union model is a method for basing the recognition on the clean part of the features, thereby reducing the effect of the noise on recognition. To this end, the union model is similar to the missing feature method. However, the two methods achieve this end through different routes. The missing feature method usually requires the identity of the noisy data for noise removal, while the union model combines the local features based on the union of random events, to reduce the dependence of the model on information about the noise. We previously investigated the applications of the union model to speech recognition involving unknown partial corruption in frequency band, in time duration, and in feature streams. Additionally, a combination of the union model with conventional noise-reduction techniques was studied, as a means of dealing with a mixture of known or trainable noise and unknown unexpected noise. In this paper, a unified review, in the context of dealing with unknown partial feature corruption, is provided into each of these applications, giving the appropriate theory and implementation algorithms, along with an experimental evaluation.