8 resultados para recessive gene
Resumo:
Introduction: Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) is an auto inflammatory syndrome caused by an autosomal recessive gene mutation. This very rare syndrome has been reported in only 14 patients worldwide. A number of clinical signs have been reported including joint contractures, muscle atrophy, microcytic anaemia, and panniculitis-induced childhood lipodystrophy. Further symptoms include recurrent fevers, purpuric skin lesions, periorbital erythema and failure to thrive. This is the first reported case of periodontal manifestations associated with CANDLE syndrome.
Case Presentation: An 11 year old boy was referred to Cork University Dental School and Hospital with evidence of severe periodontal destruction. The patient’s medical condition was managed in Great Ormond Street Children’s Hospital, London. The patient’s dental management included initial treatment to remove teeth of hopeless prognosis followed by prosthodontic rehabilitation using removable partial dentures. This was followed by further non-surgical periodontal treatment and maintenance. In the long term, the potential definitive restorative options, including dental implants, will be evaluated in discussion with the patient’s medical team.
Conclusion: Periodontitis as a manifestation of systemic disease is one of seven categories of periodontitis as defined by the American Academy of Periodontology 1999 classification system. A number of systemic diseases have been associated with advanced periodontal destruction including Diabetes Mellitus, Leukaemia and Papillon-Lefevre Syndrome. In the case described, treatment necessitated a multidisciplinary approach with input from medical and dental specialities for a young patient with severe periodontal destruction associated with CANDLE syndrome.
Resumo:
Some 60 years ago, Quentin Gibson reported the first hereditary disorder involving an enzyme when he deduced that familial methaemoglobinaemia was caused by an enzymatic lesion associated with the glycolysis pathway in red blood cells. This disorder, now known as recessive congenital methaemoglobinaemia (RCM), is caused by NADH-cytochrome b5 reductase (cb(5)r) deficiency. Two distinct clinical forms, types I and II, have been recognized, both characterized by cyanosis from birth. In type II, the cyanosis is accompanied by neurological impairment and reduced life expectancy. Cytochrome b(5) reductase is composed of one FAD and one NADH binding domain linked by a hinge region. It is encoded by the CYB5R3 (previously known as DIA1) gene and more than 40 mutations have been described, some of which are common to both types of RCM. Mutations associated with type II tend to cause incorrect splicing, disruption of the active site or truncation of the protein. At present the description of the sequence variants of cb(5)r in the literature is confusing, due to the use of two conventions which differ by one codon position. Herein we propose a new system for nomenclature of cb(5)r based on recommendations of the Human Genome Variation Society. The development of a heterologous expression system has allowed the impact of naturally occurring variants of cb(5)r to be assessed and has provided insight into the function of cb(5)r.
Resumo:
PURPOSE: Retinitis pigmentosa (RP) causes hereditary blindness in adults (prevalence, approximately 1 in 4000). Each of the more than 30 causative genes identified to date are responsible for only a small percentage of cases. Genetic diagnosis via traditional methods is problematic, and a single test with a higher probability of detecting the causative mutation would be very beneficial for the clinician. The goal of this study therefore was to develop a high-throughput screen capable of detecting both known mutations and novel mutations within all genes implicated in autosomal recessive or simplex RP. DESIGN: Evaluation of diagnostic technology. PARTICIPANTS AND CONTROLS: Participants were 56 simplex and autosomal recessive RP patients, with 360 population controls unscreened for ophthalmic disease. METHODS: A custom genechip capable of resequencing all exons containing known mutations in 19 disease-associated genes was developed (RP genechip). A second, commercially available arrayed primer extension (APEX) system was used to screen 501 individual previously reported variants. The ability of these high-throughput approaches to identify pathogenic variants was assessed in a cohort of simplex and autosomal recessive RP patients. MAIN OUTCOME MEASURES: Number of mutations and potentially pathogenic variants identified. RESULTS: The RP genechip identified 44 sequence variants: 5 previously reported mutations; 22 known single nucleotide polymorphisms (SNPs); 11 novel, potentially pathogenic variants; and 6 novel SNPs. There was strong concordance with the APEX array, but only the RP genechip detected novel variants. For example, identification of a novel mutation in CRB1 revealed a patient, who also had a single previously known CRB1 mutation, to be a compound heterozygote. In some individuals, potentially pathogenic variants were discovered in more than one gene, consistent with the existence of disease modifier effects resulting from mutations at a second locus. CONCLUSIONS: The RP genechip provides the significant advantage of detecting novel variants and could be expected to detect at least one pathogenic variant in more than 50% of patients. The APEX array provides a reliable method to detect known pathogenic variants in autosomal recessive RP and simplex RP patients and is commercially available. High-throughput genotyping for RP is evolving into a clinically useful genetic diagnostic tool.
Resumo:
Congenital hereditary endothelial dystrophy ( CHED) is a heritable, bilateral corneal dystrophy characterized by corneal opacification and nystagmus. We describe seven different mutations in the SLC4A11 gene in ten families with autosomal recessive CHED. Mutations in SLC4A11, which encodes a membrane-bound sodium-borate cotransporter, cause loss of function of the protein either by blocking its membrane targeting or nonsense-mediated decay.
Resumo:
Papillon-Lefevre syndrome, or keratosis palmoplantaris with periodontopathia (PLS, MIM 245000), is an autosomal recessive disorder that is mainly ascertained by dentists because of the severe periodontitis that afflicts patients(1,2). Both the deciduous and permanent dentitions are affected, resulting in premature tooth loss. Palmoplantar keratosis, varying from mild psoriasiform scaly skin to overt hyperkeratosis, typically develops within the first three years of life. Keratosis also affects other sites such as elbows and knees. Most PLS patients display both periodontitis and hyperkeratosis. some patients have only palmoplantar keratosis or periodontitis, and in rare individuals the periodontitis is mild and of late onset(3-6). The PLS locus has been mapped to chromosome 11q14-q21 (refs 7-9). Using homozygosity mapping in eight small consanguineous families, we have narrowed the candidate region to a 1.2-cM interval between D11S4082 and D11S931. The gene (CTSC) encoding the lysosomal protease cathepsin C (or dipeptidyl aminopeptidase I) lies within this interval. We defined the genomic structure of CTSC and found mutations in all eight families. In two of these families we used a functional assay to demonstrate an almost total loss of cathepsin C activity in PLS patients and reduced activity in obligate carriers.
Resumo:
PURPOSE. Several reports have shown that mutations in the ABCR gene can lead to Stargardt disease (STGD)/fundus flavimaculatus (FFM), autosomal recessive retinitis pigmentosa (arRP), and autosomal recessive cone-rod dystrophy (arCRD). To assess the involvement of ABCR in these retinal dystrophies, the gene was screened in a panel of 70 patients of British origin. METHODS. Fifty-six patients exhibiting the STGD/FFM phenotype, 6 with arRP, and 8 with arCRD, were screened for mutations in the 50 exons of the ABCR gene by heteroduplex analysis and direct sequencing. Microsatellite marker haplotyping was used to determine ancestry. RESULTS. In the 70 patients analyzed, 31 sequence changes were identified, of which 20 were considered to be novel mutations, in a variety of phenotypes. An identical haplotype was associated with the same pair of in-cis alterations in 5 seemingly unrelated patients and their affected siblings with STGD/FFM. Four of the aforementioned patients were found to carry three alterations in the coding sequence of the ABCR gene, with two of them being in-cis. CONCLUSIONS. These results suggest that ABCR is a relatively polymorphic gene. Because putative mutations have been identified thus far only in 25 of 70 patients, of whom only 8 are compound heterozygotes, a large number of mutations have yet to be ascertained. The disease haplotype seen in the 5 patients carrying the same 'complex' allele is consistent with the presence of a common ancestor.
Resumo:
It has been suggested on the basis of neuropathological and epidemiological evidence that schizophrenia is, at least in part, a neurodevelopmental illness. Some patients show abnormalities in cell position in the medial temporal lobes of their brains. Neurotrophin-3 is one of many proteins essential for the proper growth and development of the nervous system. Therefore the finding of a polymorphism near the promoter region of the gene, alleles of which were associated with the disease, prompted us to attempt replication. In a linkage and association analysis of the same polymorphism using familial schizophrenics and population controls we found no evidence to support the finding. We conclude that mutations or polymorphisms at this gene are unlikely to be involved in the genetic aetiology of schizophrenia.
Resumo:
Keratoconus, a common inherited ocular disorder resulting in progressive corneal thinning, is the leading indication for corneal transplantation in the developed world. Genome-wide association studies have identified common SNPs 100 kb upstream of ZNF469 strongly associated with corneal thickness. Homozygous mutations in ZNF469 and PR domain-containing protein 5 (PRDM5) genes result in brittle cornea syndrome (BCS) Types 1 and 2, respectively. BCS is an autosomal recessive generalized connective tissue disorder associated with extreme corneal thinning and a high risk of corneal rupture. Some individuals with heterozygous PRDM5 mutations demonstrate a carrier ocular phenotype, which includes a mildly reduced corneal thickness, keratoconus and blue sclera. We hypothesized that heterozygous variants in PRDM5 and ZNF469 predispose to the development of isolated keratoconus. We found a significant enrichment of potentially pathologic heterozygous alleles in ZNF469 associated with the development of keratoconus (P = 0.00102) resulting in a relative risk of 12.0. This enrichment of rare potentially pathogenic alleles in ZNF469 in 12.5% of keratoconus patients represents a significant mutational load and highlights ZNF469 as the most significant genetic factor responsible for keratoconus identified to date.