3 resultados para ranking systems
Resumo:
A ranking method assigns to every weighted directed graph a (weak) ordering of the nodes. In this paper we axiomatize the ranking method that ranks the nodes according to their outflow using four independent axioms. Besides the well-known axioms of anonymity and positive responsiveness we introduce outflow monotonicity – meaning that in pairwise comparison between two nodes, a node is not doing worse in case its own outflow does not decrease and the other node’s outflow does not increase – and order preservation – meaning that adding two weighted digraphs such that the pairwise ranking between two nodes is the same in both weighted digraphs, then this is also their pairwise ranking in the ‘sum’ weighted digraph. The outflow ranking method generalizes the ranking by outdegree for directed graphs, and therefore also generalizes the ranking by Copeland score for tournaments.
Resumo:
A search query, being a very concise grounding of user intent, could potentially have many possible interpretations. Search engines hedge their bets by diversifying top results to cover multiple such possibilities so that the user is likely to be satisfied, whatever be her intended interpretation. Diversified Query Expansion is the problem of diversifying query expansion suggestions, so that the user can specialize the query to better suit her intent, even before perusing search results. We propose a method, Select-Link-Rank, that exploits semantic information from Wikipedia to generate diversified query expansions. SLR does collective processing of terms and Wikipedia entities in an integrated framework, simultaneously diversifying query expansions and entity recommendations. SLR starts with selecting informative terms from search results of the initial query, links them to Wikipedia entities, performs a diversity-conscious entity scoring and transfers such scoring to the term space to arrive at query expansion suggestions. Through an extensive empirical analysis and user study, we show that our method outperforms the state-of-the-art diversified query expansion and diversified entity recommendation techniques.