17 resultados para quantum simulation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Exploiting multidimensional quantum walks as feasible platforms for quantum computation and quantum simulation attracts constantly growing attention from a broad experimental physics community. Here, we propose a two-dimensional quantum walk scheme with a single-qubit coin that presents, in the considered regimes, a strong localizationlike effect on the walker. The result could provide new possible directions for the implementation of quantum algorithms or from the point of view of quantum simulation. We characterize the localizationlike effect in terms of the parameters of a step-dependent qubit operation that acts on the coin space after any standard coin operation, showing that a proper choice can guarantee a nonnegligible probability of finding the walker in the origin even for large times. We finally discuss the robustness to imperfections, a qualitative relation with coherences behavior, and possible experimental realizations of this model with the current state-of-the-art settings.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a quantum simulation method that follows the dynamics of out-of-equilibrium many-body systems of electrons and oscillators in real time. Its cost is linear in the number of oscillators and it can probe time scales from attoseconds to hundreds of picoseconds. Contrary to Ehrenfest dynamics, it can thermalize starting from a variety of initial conditions, including electronic population inversion. While an electronic temperature can be defined in terms of a nonequilibrium entropy, a Fermi-Dirac distribution in general emerges only after thermalization. These results can be used to construct a kinetic model of electron-phonon equilibration based on the explicit quantum dynamics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel technique is proposed to control the dissociation mechanism of small diatomic molecules. This technique, relying upon the creation of a coherent nuclear wavepacket, uses intense (> 10(14) W cm(-2)), ultrashort (similar to 10 fs) infrared laser pulses in a pump and probe scheme. In applying this technique to D-2(+) good agreement has been observed between a quantum simulation and experiment. This represents a major step towards quantum state control in molecules, using optical fields.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider the non-equilibrium dynamics of a simple system consisting of interacting spin-1/2 particles subjected to a collective damping. The model is close to situations that can be engineered in hybrid electro/opto-mechanical settings. Making use of large-deviation theory, we find a Gallavotti-Cohen symmetry in the dynamics of the system as well as evidence for the coexistence of two dynamical phases with different activity levels. We show that additional damping processes smooth out this behavior. Our analytical results are backed up by Monte Carlo simulations that reveal the nature of the trajectories contributing to the different dynamical phases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We suggest a theoretical scheme for the simulation of quantum random walks on a line using beam splitters, phase shifters, and photodetectors. Our model enables us to simulate a quantum random walk using of the wave nature of classical light fields. Furthermore, the proposed setup allows the analysis of the effects of decoherence. The transition from a pure mean-photon-number distribution to a classical one is studied varying the decoherence parameters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A method for correlated quantum electron-ion dynamics is combined with a method for electronic open boundaries to simulate in real time the heating, and eventual equilibration at an elevated vibrational energy, of a quantum ion under current flow in an atomic wire, together with the response of the current to the ionic heating. The method can also be used to extract inelastic current voltage corrections under steady-state conditions. However, in its present form the open-boundary method contains an approximation that limits the resolution of current-voltage features. The results of the simulations are tested against analytical results from scattering theory. Directions for the improvement of the method are summarized at the end.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The simulation of open quantum dynamics has recently allowed the direct investigation of the features of system-environment interaction and of their consequences on the evolution of a quantum system. Such interaction threatens the quantum properties of the system, spoiling them and causing the phenomenon of decoherence. Sometimes however a coherent exchange of information takes place between system and environment, memory effects arise and the dynamics of the system becomes non-Markovian. Here we report the experimental realisation of a non-Markovian process where system and environment are coupled through a simulated transverse Ising model. By engineering the evolution in a photonic quantum simulator, we demonstrate the role played by system-environment correlations in the emergence of memory effects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Critical phenomena involve structural changes in the correlations of its constituents. Such changes can be reproduced and characterized in quantum simulators able to tackle medium-to-large-size systems. We demonstrate these concepts by engineering the ground state of a three-spin Ising ring by using a pair of entangled photons. The effect of a simulated magnetic field, leading to a critical modification of the correlations within the ring, is analysed by studying two- and three-spin entanglement. In particular, we connect the violation of a multipartite Bell inequality with the amount of tripartite entanglement in our ring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intense, few-femtosecond pulse technology has enabled studies of the fastest vibrational relaxation processes. The hydrogen group vibrations can be imaged and manipulated using intense infrared pulses. Through numerical simulation, we demonstrate an example of ultrafast coherent control that could be effected with current experimental facilities, and observed using high-resolution time-of-flight spectroscopy. The proposal is a pump-probe-type technique to manipulate the D2+ ion with ultrashort pulse sequences. The simulations presented show that vibrational selection can be achieved through pulse delay. We find that the vibrational system can be purified to a two-level system thus realizing a vibrational qubit. A novel scheme for the selective transfer of population between these two levels, based on a Raman process and conditioned upon the delay time of a second control-pulse is outlined, and may enable quantum encoding with this system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vibrational wavepacket revival of a basic quantum system is demonstrated experimentally. Using few-cycle laser pulse technology, pump and probe imaging of the vibrational motion of D+2 molecules is conducted, and together with a quantum-mechanical simulation of the excited wavepacket motion, the vibrational revival phenomenon has been characterised. The simulation shows good correlation with the temporal motion and structural features obtained from the data, relaying fundamental information on this diatomic system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The speedup provided by quantum algorithms with respect to their classical counterparts is at the origin of scientific interest in quantum computation. However, the fundamental reasons for such a speedup are not yet completely understood and deserve further attention. In this context, the classical simulation of quantum algorithms is a useful tool that can help us in gaining insight. Starting from the study of general conditions for classical simulation, we highlight several important differences between two nonequivalent classes of quantum algorithms. We investigate their performance under realistic conditions by quantitatively studying their resilience with respect to static noise. This latter refers to errors affecting the initial preparation of the register used to run an algorithm. We also compare the evolution of the entanglement involved in the different computational processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The state disturbance induced by locally measuring a quantum system yields a signature of nonclassical correlations beyond entanglement. Here, we present a detailed study of such correlations for two-qubit mixed states. To overcome the asymmetry of quantum discord and the unfaithfulness of measurement-induced disturbance (severely overestimating quantum correlations), we propose an ameliorated measurement-induced disturbance as nonclassicality indicator, optimized over joint local measurements, and we derive its closed expression for relevant two-qubit states. We study its analytical relation with discord, and characterize the maximally quantum-correlated mixed states, that simultaneously extremize both quantifiers at given von Neumann entropy: among all two-qubit states, these states possess the most robust quantum correlations against noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss the quantum-circuit realization of the state of a nucleon in the scope of simple simmetry groups. Explicit algorithms are presented for the preparation of the state of a neutron or a proton as resulting from the composition of their quark constituents. We estimate the computational resources required for such a simulation and design a photonic network for its implementation. Moreover, we highlight that current work on three-body interactions in lattices of interacting qubits, combined with the measurement-based paradigm for quantum information processing, may also be suitable for the implementation of these nucleonic spin states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a study of the behavior of two different figures of merit for quantum correlations, entanglement of formation and quantum discord, under quantum channels showing how the former can, counterintuitively, be more resilient to such environments spoiling effects. By exploiting strict conservation relations between the two measures and imposing necessary constraints on the initial conditions we are able to explicitly show this predominance is related to build-up of the system-environment correlations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a post-CMOS technology, the incipient Quantum-dot Cellular Automata technology has various advantages. A key aspect which makes it highly desirable is low power dissipation. One method that is used to analyse power dissipation in QCA circuits is bit erasure analysis. This method has been applied to analyse previously proposed QCA binary adders. However, a number of improved QCA adders have been proposed more recently that have only been evaluated in terms of area and speed. As the three key performance metrics for QCA circuits are speed, area and power, in this paper, a bit erasure analysis of these adders will be presented to determine their power dissipation. The adders to be analysed are the Carry Flow Adder (CFA), Brent-Kung Adder (B-K), Ladner-Fischer Adder (L-F) and a more recently developed area-delay efficient adder. This research will allow for a more comprehensive comparison between the different QCA adder proposals. To the best of the authors' knowledge, this is the first time power dissipation analysis has been carried out on these adders.