3 resultados para proteoliposomes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

NADH:ubiquinone oxidoreductase (complex I) is the largest and most complicated enzyme of aerobic electron transfer. The mechanism how it uses redox energy to pump protons across the bioenergetic membrane is still not understood. Here we determined the pumping stoichiometry of mitochondrial complex I from the strictly aerobic yeast Yarrowia lipolytica. With intact mitochondria, the measured value of 3.8H(->+)/2e(-) indicated that four protons are pumped per NADH oxidized. For purified complex I reconstituted into proteoliposomes we measured a very similar pumping stoichiometry of 3.6H(->+)/2e(-). This is the first demonstration that the proton pump of complex I stayed fully functional after purification of the enzyme. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of energy converting NADH:ubiquinone oxidoreductase (complex 1) is Still unknown. A current controversy centers around the question whether electron transport of complex I is always linked to vectorial proton translocation or whether in some organisms the enzyme pumps sodium ions instead. To develop better experimental tools to elucidate its mechanism, we have reconstituted the affinity purified enzyme into proteoliposomes and monitored the generation of Delta pH and Delta psi. We tested several detergents to solubilize the asolectin used for liposome formation. Tightly coupled proteoliposomes containing highly active complex I were obtained by detergent removal with BioBeads after total solubilization or the phospholipids with n-octyl-beta-D-glucopyranoside. We have used dyes to monitor the formation of the two components of the proton motive force, Delta pH and Delta psi, across the liposomal membrane, and analyzed the effects of inhibitors, uncouplers and ionophores on this process. We show that electron transfer of complex I of the lower eukaryote Y. lipolytica is clearly linked to proton translocation. While this study was not specifically designed to demonstrate possible additional sodium translocating properties of complex 1, we did not find indications for primary or secondary Na+ translocation by Y lipolytica complex I. (c) 2005 Elsevier B.V. All rights reserved.