77 resultados para protective immunity
Resumo:
Respiratory syncytial virus (RSV) is an important cause of severe upper and lower respiratory disease in infants and in the elderly. There are 2 main RSV subtypes A and B. A recombinant vaccine was designed based on the central domain of the RSV-A attachment G protein which we had previously named G2Na (aa130–230). Here we evaluated immunogenicity, persistence of antibody (Ab) response and protective efficacy induced in rodents by: (i) G2Na fused to DT (Diphtheria toxin) fragments in cotton rats. DT fusion did not potentiate neutralizing Ab responses against RSV-A or cross-reactivity to RSV-B. (ii) G2Nb (aa130–230 of the RSV-B G protein) either fused to, or admixed with G2Na. G2Nb did not induce RSV-B-reactive Ab responses. (iii) G2Na at low doses. Two injections of 3 µg G2Na in Alum were sufficient to induce protective immune responses in mouse lungs, preventing RSV-A and greatly reducing RSV-B infections. In cotton rats, G2Na-induced RSV-reactive Ab and protective immunity against RSV-A challenge that persisted for at least 24 weeks. (iv) injecting RSV primed mice with a single dose of G2Na/Alum or G2Na/PLGA [poly(D,L-lactide-co-glycolide]. Despite the presence of pre-existing RSV-specific Abs, these formulations effectively boosted anti-RSV Ab titres and increased Ab titres persisted for at least 21 weeks. Affinity maturation of these Abs increased from day 28 to day 148. These data indicate that G2Na has potential as a component of an RSV vaccine formulation.
Resumo:
Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified.
Resumo:
Monocytes can differentiate into dendritic cells (DC), cells with a pivotal role in both protective immunity and tolerance. Defects in the maturation or function of DC may be important in the development of autoimmune disease. We sought to establish if there were differences in the cytokine (granulocyte-macrophage colony-stimulating factor and IL-4)-driven maturation of monocytes to DC in patients with MS and whether drugs used to treat MS affected this process in vitro. We have demonstrated that there is no defect in the ability of magnetic activated cell sorting (MACS)-purified monocytes from patients with MS to differentiate to DC, but equally they show no tendency to acquire a DC phenotype without exogenous cytokines. Interferon-beta1a prevents the acquisition of a full DC phenotype as determined by light and electron microscopy and by flow cytometry. Methylprednisolone not only prevents the development of monocyte-derived DC but totally redirects monocyte differentiation towards a macrophage phenotype. Evidence is evolving for a role for DC in central nervous system immunity, either within the brain or in cervical lymph nodes. The demonstrated effect of both drugs on monocyte differentiation may represent an important site for immune therapy in MS.
Resumo:
The C-type lectin langerin/CD207 was originally discovered as a specific marker for epidermal Langerhans cells (LC). Recently, additional and distinct subsets of langerin(+) dendritic cells (DC) have been identified in lymph nodes and peripheral tissues of mice. Although the role of LC for immune activation or modulation is now being discussed controversially, other langerin(+) DC appear crucial for protective immunity in a growing set of infection and vaccination models. In knock-in mice that express the human diphtheria toxin receptor under control of the langerin promoter, injection of diphtheria toxin ablates LC for several weeks whereas other langerin(+) DC subsets are replenished within just a few days. Thus, by careful timing of diphtheria toxin injections selective states of deficiency in either LC only or all langerin(+) cells can be established. Taking advantage of this system, we found that, unlike selective LC deficiency, ablation of all langerin(+) DC abrogated the activation of IFN-gamma producing and cytolytic CD8(+) T cells after gene gun vaccination. Moreover, we identified migratory langerin(+) dermal DC as the subset that directly activated CD8(+) T cells in lymph nodes. Langerin(+) DC were also critical for IgG1 but not IgG2a Ab induction, suggesting differential polarization of CD4(+) T helper cells by langerin(+) or langerin-negative DC, respectively. In contrast, protein vaccines administered with various adjuvants induced IgG1 independently of langerin(+) DC. Taken together, these findings reflect a highly specialized division of labor between different DC subsets both with respect to Ag encounter as well as downstream processes of immune activation. The Journal of Immunology, 2011, 186: 1377-1383.
Resumo:
Lipopolysaccharide (LPS) of Yersinia enterocolitica O:3 has an inner core linked to both the O-antigen and to an outer core hexasaccharide that forms a branch. The biological role of the outer core was studied using polar and non-polar mutants of the outer core biosynthetic operon. Analysis of O-antigen- and outer core-deficient strains suggested a critical role for the outer core in outer membrane properties relevant in resistance to antimicrobial peptides and permeability to hydrophobic agents, and indirectly relevant in resistance to killing by normal serum. Wild-type bacteria but not outer core mutants killed intragastrically infected mice, and the intravenous lethal dose was approximately 10(4)-fold higher for outer core mutants. After intragastric infection, outer core mutants colonized Peyer's patches and invaded mesenteric lymph nodes, spleen and liver, and induced protective immunity against wild-type bacteria. In mice co-infected intragastrically with an outer core mutant-wild type mixture, both strains colonized Peyer's patches similarly during the first 2 days, but the mutant was much less efficient in colonizing deeper organs and was cleared faster from Peyer's patches. The results demonstrate that outer core is required for Y. enterocolitica O:3 full virulence, and strongly suggest that it provides resistance against defence mechanisms (most probably those involving bactericidal peptides).
Resumo:
Streptococcus pyogenes is the causative agent of numerous diseases ranging from benign infections (pharyngitis and impetigo) to severe infections associated with high mortality (necrotizing fasciitis and bacterial sepsis). As with other bacterial infections, there is considerable interest in characterizing the contribution of interleukin-17A (IL-17A) responses to protective immunity. We here show significant il17a up-regulation by quantitative real-time PCR in secondary lymphoid organs, correlating with increased protein levels in the serum within a short time of S. pyogenes infection. However, our data offer an important caveat to studies of IL-17A responsiveness following antigen inoculation, because enhanced levels of IL-17A were also detected in the serum of sham-infected mice, indicating that inoculation trauma alone can stimulate the production of this cytokine. This highlights the potency and speed of innate IL-17A immune responses after inoculation and the importance of proper and appropriate controls in comparative analysis of immune responses observed during microbial infection.
Resumo:
Well-defined correlates of protective immunity are an essential component of rational vaccine development. Despite years of basic science and three HIV vaccine efficacy trials, correlates of immunological protection from HIV infection remain undefined. In December 2010, a meeting of scientists engaged in basic and translational work toward developing HIV-1 vaccines was convened. The goal of this meeting was to discuss current opportunities and optimal approaches for defining correlates of protection, both for ongoing and future HIV-1 vaccine candidates; specific efforts were made to engage young scientists. We discuss here the highlights from the meeting regarding the progress made and the way forward for a protective HIV-1 vaccine.
Resumo:
Gene gun immunization, i.e., bombardment of skin with DNA-coated particles, is an efficient method for the administration of DNA vaccines. Direct transfection of APC or cross-presentation of exogenous Ag acquired from transfected nonimmune cells enables MHC-I-restricted activation of CD8(+) T cells. Additionally, MHC-II-restricted presentation of exogenous Ag activates CD4(+) Th cells. Being the principal APC in the epidermis, Langerhans cells (LC) seem ideal candidates to accomplish these functions. However, the dependence on LC of gene gun-induced immune reactions has not yet been demonstrated directly. This was primarily hampered by difficulties to discriminate the contributions of LC from those of other dermal dendritic cells. To address this problem, we have used Langerin-diphtheria toxin receptor knockin mice that allow for selective inducible ablation of LC. LC deficiency, even over the entire duration of experiments, did not affect any of the gene gun-induced immune functions examined, including proliferation of CD4(+) and CD8(+) T cells, IFN-gamma secretion by spleen cells, Ab production, CTL activity, and development of protective antitumor immunity.
Resumo:
There has been a long history of defining T cell epitopes to track viral immunity and to design rational vaccines, yet few data of this type exist for bacterial infections. Bacillus anthracis, the causative agent of anthrax, is both an endemic pathogen in many regions and a potential biological warfare threat. T cell immunity in naturally infected anthrax patients has not previously been characterized, which is surprising given concern about the ability of anthrax toxins to subvert or ablate adaptive immunity. We investigated CD4 T cell responses in patients from the Kayseri region of Turkey who were previously infected with cutaneous anthrax. Responses to B. anthracis protective Ag and lethal factor (LF) were investigated at the protein, domain, and epitope level. Several years after antibiotic-treated anthrax infection, strong T cell memory was detectable, with no evidence of the expected impairment in specific immunity. Although serological responses to existing anthrax vaccines focus primarily on protective Ag, the major target of T cell immunity in infected individuals and anthrax-vaccinated donors was LF, notably domain IV. Some of these anthrax epitopes showed broad binding to several HLA class alleles, but others were more constrained in their HLA binding patterns. Of specific CD4 T cell epitopes targeted within LF domain IV, one is preferentially seen in the context of bacterial infection, as opposed to vaccination, suggesting that studies of this type will be important in understanding how the human immune system confronts serious bacterial infection.
Resumo:
Bacillus anthracis secretes exotoxins which act through several mechanisms including those that can subvert adaptive immunity with respect both to antigen presenting cell and T cell function. The combination of Protective Antigen (PA) and Lethal Factor (LF) forming Lethal Toxin (LT), acts within host cells to down-regulate the mitogen activated protein kinase (MAPK) signaling cascade. Until recently the MAPK kinases were the only known substrate for LT; over the past few years it has become evident that LT also cleaves Nlrp1, leading to inflammasome activation and macrophage death. The predicted downstream consequences of subverting these important cellular pathways are impaired antigen presentation and adaptive immunity. In contrast to this, recent work has indicated that robust memory T cell responses to B. anthracis antigens can be identified following natural anthrax infection. We discuss how LT affects the adaptive immune response and specifically the identification of B. anthracis epitopes that are both immunogenic and protective with the potential for inclusion in protein sub-unit based vaccines.
The impact of sett disturbance on badger Meles meles numbers: when does protective legislation work?