4 resultados para pp cross-section
Resumo:
Peer effects in adolescent cannabis are difficult to estimate, due in part to the lack of appropriate data on behaviour and social ties. This paper exploits survey data that have many desirable properties and have not previously been used for this purpose. The data set, collected from teenagers in three annual waves from 2002-2004 contains longitudinal information about friendship networks within schools (N = 5,020). We exploit these data on network structure to estimate peer effects on adolescents from their nominated friends within school using two alternative approaches to identification. First, we present a cross-sectional instrumental variable (IV) estimate of peer effects that exploits network structure at the second degree, i.e. using information on friends of friends who are not themselves ego’s friends to instrument for the cannabis use of friends. Second, we present an individual fixed effects estimate of peer effects using the full longitudinal structure of the data. Both innovations allow a greater degree of control for correlated effects than is commonly the case in the substance-use peer effects literature, improving our chances of obtaining estimates of peer effects than can be plausibly interpreted as causal. Both estimates suggest positive peer effects of non-trivial magnitude, although the IV estimate is imprecise. Furthermore, when we specify identical models with behaviour and characteristics of randomly selected school peers in place of friends’, we find effectively zero effect from these ‘placebo’ peers, lending credence to our main estimates. We conclude that cross-sectional data can be used to estimate plausible positive peer effects on cannabis use where network structure information is available and appropriately exploited.
Resumo:
We hypothesize that at least some of the recently discovered class of calcium-rich gap transients are tidal detonation events of white dwarfs (WDs) by black holes (BHs) or possibly neutron stars. We show that the properties of the calcium-rich gap transients agree well with the predictions of the tidal detonation model. Under the predictions of this model, we use a follow-up X-ray observation of one of these transients, SN 2012hn, to place weak upper limits on the detonator mass of this system that include all intermediate-mass BHs (IMBHs). As these transients are preferentially in the stellar haloes of galaxies, we discuss the possibility that these transients are tidal detonations of WDs caused by random flyby encounters with IMBHs in dwarf galaxies or globular clusters. This possibility has been already suggested in the literature but without connection to the calcium-rich gap transients. In order for the random flyby cross-section to be high enough, these events would have to be occurring inside these dense stellar associations. However, there is a lack of evidence for IMBHs in these systems, and recent observations have ruled out all but the very faintest dwarf galaxies and globular clusters for a few of these transients. Another possibility is that these are tidal detonations caused by three-body interactions, where a WD is perturbed towards the detonator in isolated multiple star systems. We highlight a number of ways this could occur, even in lower mass systems with stellar-mass BHs or neutron stars. Finally, we outline several new observational tests of this scenario, which are feasible with current instrumentation.
Resumo:
A parametric study of cold-formed steel sections with web openings subjected to web crippling under end-one-flange (EOF) loading condition is undertaken, using finite element analysis, to investigate the effects of web holes and cross-section sizes. The holes are located either centred above the bearing plates or with a horizontal clear distance to the near edge of the bearing plates. It was demonstrated that the main factors influencing the web crippling strength are the ratio of the hole depth to the depth of the web, the ratio of the length of bearing plates to the flat depth of the web and the location of the holes as defined by the distance of the hole from the edge of the bearing plate divided by the flat depth of web. In this study, design recommendations in the form of web crippling strength reduction factor equations are proposed, which are conservative when compared with the experimental and finite element results.
Resumo:
New absolute cross sections for dissociative electron attachment to HCCCN (cyanoacetylene or propiolonitrile) in the range of 0-10 eV electron energy are presented here, which have been determined from a new analysis of previously reported data (Graupner et al 2006 New J. Phys. 8 117). The highest cross sections are observed for the formation of CN- at 5.3 eV and CCCN- at 5.1 eV; approximately 0.06 Å2 and 0.05 Å2 respectively. As part of the re-analysis, it was necessary to determine absolute cross sections for electron-impact ionization of HCCCN with the binary-encounter Bethe method. These electron-impact ionization absolute cross sections for HCCCN are also presented here; the maximum value was found to be ∼6.6 Å2 at ∼80 eV.