2 resultados para post harvest


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the study was to determine the geographical and seasonal variations in aflatoxin dietary exposure levels in adults from Senegal. A total of 168 adults (50% male) were recruited from three districts: Nioro du Rip (n=90), located in the Sudan Savannah agro-ecological zone where rainfall is sufficient for groundnut growth; Saint-Louis (n=40) and Mboro (n=38), located in the Sahel zone where groundnuts are produced under irrigated conditions. Diet information and samples were collected at groundnut harvest and post-harvest seasons. Plasma aflatoxin-albumin adducts (AF-alb) and total aflatoxin in household groundnut samples were measured by ELISA and a quantitative thin layer chromatography method, respectively. The blood AF-alb geometric mean was 45.7 pg/mg albumin (range 5.5-588.2 pg/mg). Nioro du Rip had a higher AF-alb level at harvest than Saint-Louis and Mboro (80.0 vs 15.6 and 33.3 pg/mg, P<0.001). Similar trends were observed at post-harvest (P<0.05). Seasonal trends were not consistent across the districts as Nioro du Rip had a higher AF-alb level at harvest than post-harvest (80.0 vs 58.6 pg/mg, P=0.026), whereas Saint-Louis had a higher level at post-harvest than harvest (25.6 vs 15.6 pg/mg, P=0.032). It is clear that aflatoxin exposure is prevalent in adults from Senegal and that season and geographical location are strong determinants of aflatoxin exposure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SCOPE: Aflatoxin exposure coincides with micronutrient deficiencies in developing countries. Animal feeding studies have postulated that aflatoxin exposure may be exacerbating micronutrient deficiencies. Evidence available in human subjects is limited and inconsistent. The aim of the study was to investigate the relationship between aflatoxin exposure and micronutrient status among young Guinean children.

METHOD AND RESULTS: A total of 305 children (28.8 ± 8.4 months) were recruited at groundnut harvest (rainy season), of which 288 were followed up 6 months later post-harvest (dry season). Blood samples were collected at each visit. Aflatoxin-albumin adduct levels were measured by ELISA. Vitamin A, vitamin E and β-carotene concentrations were measured using HPLC methods. Zinc was measured by atomic absorption spectroscopy. Aflatoxin exposure and micronutrient deficiencies were prevalent in this population and were influenced by season, with levels increasing between harvest and post-harvest. At harvest, children in the highest aflatoxin exposure group, compared to the lowest, were 1.98 (95%CI: 1.00, 3.92) and 3.56 (95%CI: 1.13, 11.15) times more likely to be zinc and vitamin A deficient.

CONCLUSION: Although children with high aflatoxin exposure levels were more likely to be zinc and vitamin A deficient, further research is necessary to determine a cause and effect relationship.