11 resultados para plastid
Resumo:
This study reports the isolation and polymorphism characterization of four plastid indels and six nuclear microsatellite loci in the invasive plant Heracleum mantegazzianum. These markers were tested in 27 individuals from two distant H. mantegazzianum populations. Plastid indels revealed the presence of five chlorotypes while five nuclear microsatellite loci rendered polymorphism. Applications of these markers include population genetics and phylogeography of H. mantegazzianum. A very good transferability of markers to Heracleum sphondylium was demonstrated.
Resumo:
Despite the potential model role of the green algal genus Codium for studies of marine speciation and evolution, there have been difficulties with species delimitation and a molecular phylogenetic framework was lacking. In the present study, 74 evolutionarily significant units (ESUs) are delimited using 227 rbcL exon 1 sequences obtained from specimens collected throughout the genus' range. Several morpho-species were shown to be poorly defined, with some clearly in need of lumping and others containing pseudo-cryptic diversity. A phylogenetic hypothesis of 72 Codium ESUs is inferred from rbcL exon 1 and rps3-rp/16 sequence data using a conventional nucleotide substitution model (GTR + Gamma + I), a codon position model and a covariotide (covarion) model, and the fit of a multitude of substitution models and alignment partitioning strategies to the sequence data is reported. Molecular clock tree rooting was carried out because out-group rooting was probably affected by phylogenetic bias. Several aspects of the evolution of morphological features of Codium are discussed and the inferred phylogenetic hypothesis is used as a framework to study the biogeography of the genus, both at a global scale and within the Indian Ocean. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
To date, the majority of molecular genetic studies in algae have utilized a fairly limited range of markers such as the plastid rbcL gene and spacer, the mitochondrial cox2-3 spacer or the nuclear ribosomal DNA and spacers. The lack of available markers has been particularly problematic in studies of within-species variation. Whilst microsatellites are now being developed in many algal species, there remains a need for universal markers that can be applied to a wide range of species. The increasing availability of complete plastid genome sequences for several algae has allowed us to develop two sets of universal primers, similar to those available in higher plants, for the amplification of coding and non-coding regions of the plastid genome in red and green algae. These markers are expected to be useful in a broad range of algal population genetic and phylogenetic studies.
Resumo:
Gymnogongrus sp. (Phyllophoraceae) from Nova Scotia, Canada, identified tentatively as G. devoniensis (Greville) Schotter, grows in association with an Erythrodermis-like crust that forms chains of tetrasporangia or bisporangia. The crust resembles tetrasporophytic phases of other Gymnogongrus species, but in culture both it and the G. ?devoniensis gametophytes cycle independently by apomictic reproduction.
Resumo:
Phylogeography has provided a new approach to the analysis of the postglacial history of a wide range of taxa but, to date, little is known about the effect of glacial periods on the marine biota of Europe. We have utilized a combination of nuclear, plastid and mitochondrial genetic markers to study the biogeographic history of the red seaweed Palmaria palmata in the North Atlantic. Analysis of the nuclear rDNA operon (ITS1-5.8S-ITS2), the plastid 16S-trnI-trnA-23S-5S, rbcL-rbcS and rpl12-rps31-rpl9 regions and the mitochondrial cox2–3 spacer has revealed the existence of a previously unidentified marine refugium in the English Channel, along with possible secondary refugia off the southwest coast of Ireland and in northeast North America and/or Iceland. Coalescent and mismatch analyses date the expansion of European populations from approximately 128 000 bp and suggest a continued period of exponential growth since then. Consequently, we postulate that the penultimate (Saale) glacial maximum was the main event in shaping the biogeographic history of European P. palmata populations which persisted throughout the last (Weichselian) glacial maximum (c. 20 000 bp) in the Hurd Deep, an enigmatic trench in the English Channel.
Resumo:
The spread of nonindigenous species into new habitats is having a drastic effect on natural ecosystems and represents an increasing threat to global biodiversity. In the marine environment, where data on the movement of invasive species is scarce, the spread of alien seaweeds represents a particular problem. We have employed a combination of plastid microsatellite markers and DNA sequence data from three regions of the plastid genome to trace the invasive history of the green alga Codium fragile ssp. tomentosoides. Extremely low levels of genetic variation were detected, with only four haplotypes present in the species’ native range in Japan and only two of these found in introduced populations. These invasive populations displayed a high level of geographical structuring of haplotypes, with one haplotype localized in the Mediterranean and the other found in Northwest Atlantic, northern European and South Pacific populations. Consequently, we postulate that there have been at least two separate introductions of C. fragile ssp. tomentosoides from its native range in the North Pacific.
Resumo:
This paper describes our recent extraction of ancient DNA (aDNA) from Holocene pollen and discusses the potential of the technique for elucidating timescales of evolutionary change. We show that plastid DNA is recoverable and usable from pollen grains of Scots pine Pinus sylvestris from 10 ka and 100 years ago. Comparison of the ancient sequences with modern sequences, obtained from an extant population, establish a first genetic link between modern and fossil samples of Scots pine, providing a genetic continuity through time. One common haplotype is present in each of the three periods investigated, suggesting that it persisted near the lake throughout the postglacial. The retrieval of aDNA from pollen has major implications for palaeoecology by allowing (i) investigation of population level dynamics in time and space, and (ii) tracing ancestry of populations and developing phylogenetic trees that include extinct as well as extant taxa. The method should work over the last glacial oscillation, thus giving access to ancestry of populations over a crucial period of time for the understanding of the relationship between speciation and climate change.
Resumo:
The genus Asparagopsis was studied using 25 Falkenbergia tetrasporophyte strains collected worldwide. Plastid (cp) DNA RFLP revealed three groups of isolates, which differed in their small subunit rRNA gene sequences, temperature responses, and tetrasporophytic morphology (cell sizes). Strains from Australia, Chile, San Diego, and Atlantic and Mediterranean Europe were identifiable as A. armata Harvey, the gametophyte of which has distinctive barbed spines. This species is believed to be endemic to cold-temperate waters of Australia and New Zealand and was introduced into Europe in the 1920s. All isolates showed identical cpDNA RFLPs, consistent with a recent introduction from Australia. Asparagopsis taxiformis (Delile) Trevisan, the type and only other recognized species, which lacks spines, is cosmopolitan in warm-temperate to tropical waters. Two clades differed morphologically and ecophysiologically and in the future could be recognized as sibling species or subspecies. A Pacific/Italian clade had 4-8degrees C lower survival minima and included a genetically distinct apomictic isolate from Western Australia that corresponded to the form of A. taxiformis originally described as A. sanfordiana Harvey. The second clade, from the Caribbean and the Canaries, is stenothermal (subtropical to tropical) with some ecotypic variation. The genus Asparagopsis consists of two or possibly three species, but a definitive taxonomic treatment of the two A. taxiformis clades requires study of field-collected gametophytes.
Resumo:
Restriction fragment length polymorphism (RFLP) analysis of chloroplast (cp) DNA is a powerful tool for the study of microevolutionary processes in land plants, yet has not previously been applied to seaweed populations. We used cpDNA-RFLP, detected on Southern blots using labeled total plastid DNA, to search for intraspecific and intrapopulational cpDNA RFLP polymorphism in two species of the common red algal genus Ceramium in Ireland and Britain. In C. botryocarpum one polymorphism was detected in one individual among 18 from two populations. Twenty-six individuals of C. virgatum from five populations at three locations exhibited a total of four haplotypes. One was frequent (80.8% of individuals); the others were rare (7.7, 7.7 and 4.2%) and were private to particular populations. Polymorphism was observed in two populations. The corrected mean was 2.26 +/- 0.36 haplotypes per population, which was within the typical range determined for higher plants using similar techniques. The spatial distribution of haplotypes was heterogeneous, with highly significant population differentiation (P = 0.00018; Fisher's exact test). Intraspecific polymorphism in C. virgatum had no impact on species-level phylogenetic reconstruction. This is the first unequivocal report of both intraspecific and intrapopulational cpDNA-RFLP polymorphism in algae.
Resumo:
The cosmopolitan genus Ceramium (Ceramiaceae, Rhodophyta) is a large and systematically complex group. The taxonomy of this genus remains in a chaotic state due to the high degree of morphological variation. Culture studies, suggesting a strong influence of environment on phenotype, and the use of molecular tools have recently questioned the validity of morphological features used in species recognition. Here we compare three Ceramium taxa from Venice lagoon with samples from northwest Europe using the plastid ribulose-1,5-bisphosphate carboxylase/oxygenase gene (rbcL) and the rbcL-rbcS intergenic spacer combined with morphological observations. A strongly banded species, previously identified as member of a poorly understood and misnamed group, the Ceramium diaphanum complex sensu Feldmann-Mazoyer, is probably conspecific with British samples of Ceramium diaphanum sensu Harvey, for which no valid name has been identified up to now. We show that Ceramium polyceras (Kutzing) Zanardini is a valid name for this species. A fully corticated Ceramium species morphologically resembling C. secundatum differs at the species level from Atlantic C. secundatum; a valid name for this entity is Ceramium derbesii Solier ex Kutzing, described from Mediterranean France. A third species characterized by cortical spines, previously listed as Ceramium ciliation var. robustum (J. Agardh) Mazoyer, is shown to be Ceramium nudiusculum (Kutzing) Rabenhorst, originally described from Venice.
Resumo:
The chromosome number of Gracilaria verrucosa (Hudson) Papenfuss was estimated in numerous individuals from different populations of the Cape Gris-Nez area of Northern France. To optimize estimates and to minimize counting errors, several counts were made on the same nucleus and in different nuclei of the same individual. The haploid chromosome number was estimated in vegetative gametophytic cells and tetrasporocytic cells; the diploid number was estimated from tetrasporophytic vegetative cells. The basic haploid number was n = 17 +/- 1, whereas all other Gracilaria species for which chromosome numbers are available are reported to have n = 24. These include populations of G. verrucosa from Norway and Wales that have previously been shown to be conspecific with the Cape Gris-Nez populations by comparison of plastid DNA data. G. verrucosa is therefore one of the few red algae for which populations with different chromosome numbers are known.