4 resultados para plasma dispersion effect


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of two types of graphene nanoplatelets (GNPs) on the physico-mechanical properties of linear low-density polyethylene (LLDPE) was investigated. The addition of these two types of GNPs – designated as grades C and M – enhanced the thermal conductivity of the LLDPE, with a more pronounced improvement resulting from the M-GNPs compared to C-GNPs. Improvement in electrical conductivity and decomposition temperature was also noticed with the addition of GNPs. In contrast to the thermal conductivity, C-GNPs resulted in greater improvements in the electrical conductivity and thermal decomposition temperature. These differences can be attributed to differences in the surface area and dispersion of the two types of GNPs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A self-consistent relativistic two-fluid model is proposed for one-dimensional electron-ion plasma dynamics. A multiple scales perturbation technique is employed, leading to an evolution equation for the wave envelope, in the form of a nonlinear Schrödinger type equation (NLSE). The inclusion of relativistic effects is shown to introduce density-dependent factors, not present in the non-relativistic case - in the conditions for modulational instability. The role of relativistic effects on the linear dispersion laws and on envelope soliton solutions of the NLSE is discussed.