14 resultados para planets and satellites: detection
Resumo:
We present a primary transit observation for the ultra-hot (T eq ~ 2400 K) gas giant expolanet WASP-121b, made using the Hubble Space Telescope Wide Field Camera 3 in spectroscopic mode across the 1.12–1.64 μm wavelength range. The 1.4 μm water absorption band is detected at high confidence (5.4σ) in the planetary atmosphere. We also reanalyze ground-based photometric light curves taken in the B, r', and z' filters. Significantly deeper transits are measured in these optical bandpasses relative to the near-infrared wavelengths. We conclude that scattering by high-altitude haze alone is unlikely to account for this difference and instead interpret it as evidence for titanium oxide and vanadium oxide absorption. Enhanced opacity is also inferred across the 1.12–1.3 μm wavelength range, possibly due to iron hydride absorption. If confirmed, WASP-121b will be the first exoplanet with titanium oxide, vanadium oxide, and iron hydride detected in transmission. The latter are important species in M/L dwarfs and their presence is likely to have a significant effect on the overall physics and chemistry of the atmosphere, including the production of a strong thermal inversion.
Resumo:
Kepler-93b is a 1.478 ± 0.019 R ⊕ planet with a4.7 day period around a bright (V = 10.2), astroseismicallycharacterized host star with a mass of 0.911 ± 0.033 M⊙ and a radius of 0.919 ± 0.011 R⊙. Based on 86 radial velocity observations obtainedwith the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 32archival Keck/HIRES observations, we present a precise mass estimate of4.02 ± 0.68 M ⊕. The corresponding high densityof 6.88 ± 1.18 g cm-3 is consistent with a rockycomposition of primarily iron and magnesium silicate. We compareKepler-93b to other dense planets with well-constrained parameters andfind that between 1 and 6 M ⊕, all dense planetsincluding the Earth and Venus are well-described by the same fixed ratioof iron to magnesium silicate. There are as of yet no examples of suchplanets with masses >6 M ⊕. All known planets inthis mass regime have lower densities requiring significant fractions ofvolatiles or H/He gas. We also constrain the mass and period of theouter companion in the Kepler-93 system from the long-term radialvelocity trend and archival adaptive optics images. As the sample ofdense planets with well-constrained masses and radii continues to grow,we will be able to test whether the fixed compositional model found forthe seven dense planets considered in this paper extends to the fullpopulation of 1-6 M ⊕ planets.Based on observations made with the Italian Telescopio Nazionale Galileo(TNG) operated on the island of La Palma by the Fundación GalileoGalilei of the INAF (Istituto Nazionale di Astrofisica) at the SpanishObservatorio del Roque de los Muchachos of the Instituto de Astrofisicade Canarias.
Resumo:
Kepler-454 (KOI-273) is a relatively bright (V = 11.69 mag), Sun-like star that hosts a transiting planet candidate in a 10.6 day orbit. From spectroscopy, we estimate the stellar temperature to be 5687 ± 50 K, its metallicity to be [m/H] = 0.32 ± 0.08, and the projected rotational velocity to be v sin i <2.4 km s-1. We combine these values with a study of the asteroseismic frequencies from short cadence Kepler data to estimate the stellar mass to be , the radius to be 1.066 ± 0.012 Ro, and the age to be Gyr. We estimate the radius of the 10.6 day planet as 2.37 ± 0.13 R⊕. Using 63 radial velocity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 36 observations made with the HIRES spectrograph at the Keck Observatory, we measure the mass of this planet to be 6.8 ± 1.4 M⊕. We also detect two additional non-transiting companions, a planet with a minimum mass of 4.46 ± 0.12 MJ in a nearly circular 524 day orbit and a massive companion with a period >10 years and mass >12.1 MJ. The 12 exoplanets with radii ⊕ and precise mass measurements appear to fall into two populations, with those ⊕ following an Earth-like composition curve and larger planets requiring a significant fraction of volatiles. With a density of 2.76 ± 0.73 g cm-3, Kepler-454b lies near the mass transition between these two populations and requires the presence of volatiles and/or H/He gas.
Resumo:
Sensitive detection of pathogens is critical to ensure the safety of food supplies and to prevent bacterial disease infection and outbreak at the first onset. While conventional techniques such as cell culture, ELISA, PCR, etc. have been used as the predominant detection workhorses, they are however limited by either time-consuming procedure, complicated sample pre-treatment, expensive analysis and operation, or inability to be implemented at point-of-care testing. Here, we present our recently developed assay exploiting enzyme-induced aggregation of plasmonic gold nanoparticles (AuNPs) for label-free and ultrasensitive detection of bacterial DNA. In the experiments, AuNPs are first functionalized with specific, single-stranded RNA probes so that they exhibit high stability in solution even under high electrolytic condition thus exhibiting red color. When bacterial DNA is present in a sample, a DNA-RNA heteroduplex will be formed and subsequently prone to the RNase H cleavage on the RNA probe, allowing the DNA to liberate and hybridize with another RNA strand. This continuously happens until all of the RNA strands are cleaved, leaving the nanoparticles ‘unprotected’. The addition of NaCl will cause the ‘unprotected’ nanoparticles to aggregate, initiating a colour change from red to blue. The reaction is performed in a multi-well plate format, and the distinct colour signal can be discriminated by naked eye or simple optical spectroscopy. As a result, bacterial DNA as low as pM could be unambiguously detected, suggesting that the enzyme-induced aggregation of AuNPs assay is very easy to perform and sensitive, it will significantly benefit to development of fast and ultrasensitive methods that can be used for disease detection and diagnosis.
Resumo:
This study describes further validation of a previously described Peptide-mediated magnetic separation (PMS)-Phage assay, and its application to test raw cows’ milk for presence of viable Mycobacterium avium subsp. paratuberculosis (MAP). The inclusivity and exclusivity of the PMS-phage assay were initially assessed, before the 50% limit of detection (LOD50) was determined and compared with those of PMS-qPCR (targeting both IS900 and f57) and PMS-culture. These methods were then applied in parallel to test 146 individual milk samples and 22 bulk tank milk samples from Johne’s affected herds. Viable MAP were detected by the PMS-phage assay in 31 (21.2%) of 146 individual milk samples (mean plaque count of 228.1 PFU/50 ml, range 6-948 PFU/50 ml), and 13 (59.1%) of 22 bulk tank milks (mean plaque count of 136.83 PFU/50 ml, range 18-695 PFU/50 ml). In contrast, only 7 (9.1%) of 77 individual milks and 10 (45.4%) of 22 bulk tank milks tested PMS-qPCR positive, and 17 (11.6%) of 146 individual milks and 11 (50%) of 22 bulk tank milks tested PMS-culture positive. The mean 50% limits of detection (LOD50) of the PMS-phage, PMS-IS900 qPCR and PMS-f57 qPCR assays, determined by testing MAP-spiked milk, were 0.93, 135.63 and 297.35 MAP CFU/50 ml milk, respectively. Collectively, these results demonstrate that, in our laboratory, the PMS-phage assay is a sensitive and specific method to quickly detect the presence of viable MAP cells in milk. However, due to its complicated, multi-step nature, the method would not be a suitable MAP screening method for the dairy industry.
Resumo:
Studies of the physical properties of trans-Neptunian objects (TNOs) are a powerful probe into the processes of planetesimal formation and solar system evolution. James Webb Space Telescope (JWST) will provide unique new capabilities for such studies. Here, we outline where the capabilities of JWST open new avenues of investigation, potentially valuable observations and surveys, and conclude with a discussion of community actions that may serve to enhance the eventual science return of JWST's TNO observations.
Resumo:
AIMS: Mutation detection accuracy has been described extensively; however, it is surprising that pre-PCR processing of formalin-fixed paraffin-embedded (FFPE) samples has not been systematically assessed in clinical context. We designed a RING trial to (i) investigate pre-PCR variability, (ii) correlate pre-PCR variation with EGFR/BRAF mutation testing accuracy and (iii) investigate causes for observed variation. METHODS: 13 molecular pathology laboratories were recruited. 104 blinded FFPE curls including engineered FFPE curls, cell-negative FFPE curls and control FFPE tissue samples were distributed to participants for pre-PCR processing and mutation detection. Follow-up analysis was performed to assess sample purity, DNA integrity and DNA quantitation. RESULTS: Rate of mutation detection failure was 11.9%. Of these failures, 80% were attributed to pre-PCR error. Significant differences in DNA yields across all samples were seen using analysis of variance (p
Resumo:
BACKGROUND: Although most gastrointestinal stromal tumours (GIST) carry oncogenic mutations in KIT exons 9, 11, 13 and 17, or in platelet-derived growth factor receptor alpha (PDGFRA) exons 12, 14 and 18, around 10% of GIST are free of these mutations. Genotyping and accurate detection of KIT/PDGFRA mutations in GIST are becoming increasingly useful for clinicians in the management of the disease. METHOD: To evaluate and improve laboratory practice in GIST mutation detection, we developed a mutational screening quality control program. Eleven laboratories were enrolled in this program and 50 DNA samples were analysed, each of them by four different laboratories, giving 200 mutational reports. RESULTS: In total, eight mutations were not detected by at least one laboratory. One false positive result was reported in one sample. Thus, the mean global rate of error with clinical implication based on 200 reports was 4.5%. Concerning specific polymorphisms detection, the rate varied from 0 to 100%, depending on the laboratory. The way mutations were reported was very heterogeneous, and some errors were detected. CONCLUSION: This study demonstrated that such a program was necessary for laboratories to improve the quality of the analysis, because an error rate of 4.5% may have clinical consequences for the patient.
Resumo:
While violence against children is a common occurrence only a minority of incidents come to the attention of the authorities. Low reporting rates notwithstanding, official data such as child protection referrals and recorded crime statistics provide valuable information on the numbers of children experiencing harm which come to the attention of professionals in any given year. In the UK, there has been a strong tendency to focus on child protection statistics while children as victims of crime remain largely invisible in annual crime reports and associated compendia. This is despite the implementation of a raft of policies aimed at improving the system response to victims and witnesses of crime across the UK. This paper demonstrates the utility of a more detailed analysis of crime statistics in providing information on the patterns of crime against children and examining case outcomes. Based on data made available by the Police Service for Northern Ireland, it highlights how violent crime differentially impacts on older children and how detection rates vary depending on case characteristics. It makes an argument for developing recorded crime practice to make child victims of crime more visible and to facilitate assessment of the effectiveness of current initiatives and policy developments. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
In this study, the authors propose simple methods to evaluate the achievable rates and outage probability of a cognitive radio (CR) link that takes into account the imperfectness of spectrum sensing. In the considered system, the CR transmitter and receiver correlatively sense and dynamically exploit the spectrum pool via dynamic frequency hopping. Under imperfect spectrum sensing, false-alarm and miss-detection occur which cause impulsive interference emerged from collisions due to the simultaneous spectrum access of primary and cognitive users. That makes it very challenging to evaluate the achievable rates. By first examining the static link where the channel is assumed to be constant over time, they show that the achievable rate using a Gaussian input can be calculated accurately through a simple series representation. In the second part of this study, they extend the calculation of the achievable rate to wireless fading environments. To take into account the effect of fading, they introduce a piece-wise linear curve fitting-based method to approximate the instantaneous achievable rate curve as a combination of linear segments. It is then demonstrated that the ergodic achievable rate in fast fading and the outage probability in slow fading can be calculated to achieve any given accuracy level.
Resumo:
BACKGROUND: ALK rearrangement is particularly observed in signet-ring sub-type adenocarcinoma. Since fluorescence in situ hybridization (FISH) is not suitable for mass screening, we aimed to characterize the predictive utility of tumour morphology and ALK immunoreactivity to identify ALK rearrangement, in a primary lung adenocarcinoma dataset enriched for signet-ring morphology, compared with that of other morphology. METHODS: 7 adenocarcinomas from diagnostic archives reported with signet-ring morphology were assessed and compared with 11 adenocarcinomas without signet-ring features over the same time period. Growth patterns were reviewed, ALK expression was assessed by standard immunohistochemistry using ALK1 clone and Envision detection (Dako), and ALK rearrangement was assessed by FISH (Abbott Molecular). Associations between groups and predictive utility of tumour morphology and ALK expression using FISH as gold standard were calculated. RESULTS: 2 excision lung biopsy cases with pure (100%) signet-ring morphology and solid patterns demonstrated diffuse moderate cytoplasmic ALK immunoreactivity (2+) and harboured ALK rearrangements (p=0.007), unlike 5 mixed-signet-ring and 11 non-signet-ring adenocarcinomas, which showed negative or 1+ immunoreactivity; and did not harbour ALK rearrangements (p>0.1). ALK expression was not associated with ALK copy number. 6 of 7 cases with signet ring morphology stained for TTF-1. Pure signet-ring morphology and moderate ALK expression were both associated with ALK rearranged tumours. CONCLUSION: ALK rearrangement is strongly associated with ALK immunoreactivity, and was seen only in tumours with pure signet-ring morphology and solid growth pattern. Tumour morphology, growth pattern and ALK immunoreactivity appear to be good indicators of ALK rearrangement, with TTF-1 positivity aiding in proving primary pulmonary origin.
Resumo:
The development of an ultrasensitive biosensor for the low-cost and on-site detection of pathogenic DNA could transform detection capabilities within food safety, environmental monitoring and clinical diagnosis. Herein, we present an innovative approach exploiting endonuclease-controlled aggregation of plasmonic gold nanoparticles (AuNPs) for label-free and ultrasensitive detection of bacterial DNA. The method utilizes RNA-functionalized AuNPs which form DNA-RNA heteroduplex structures through specific hybridization with target DNA. Once formed, the DNA-RNA heteroduplex is susceptible to RNAse H enzymatic cleavage of the RNA probe, allowing the target DNA to liberate and hybridize with another RNA probe. This continuously happens until all of the RNA probes are cleaved, leaving the nanoparticles unprotected and thus aggregated upon exposure to a high electrolytic medium. The assay is ultrasensitive, allowing the detection of target DNA at femtomolar level by simple spectroscopic analysis (40.7 fM and 2.45 fM as measured by UV-vis and dynamic light scattering (DLS), respectively). The target DNA spiked food matrix (chicken meat) is also successfully detected at a concentration of 1.2 pM (by UV-vis) or 18.0 fM (by DLS). In addition to the ultra-high sensitivity, the total analysis time of the assay is less than 3 hours, thus demonstrating its practicality for food analysis.