636 resultados para planetary rovers


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the first detailed kinematical analysis of the planetary nebula Abell 63, which is known to contain the eclipsing close-binary nucleus UU Sge. Abell 63 provides an important test case in investigating the role of close-binary central stars on the evolution of planetary nebulae. Longslit observations were obtained using the Manchester echelle spectrometer combined with the 2.1-m San Pedro Martir Telescope. The spectra reveal that the central bright rim of Abell 63 has a tube-like structure. A deep image shows collimated lobes extending from the nebula, which are shown to be high-velocity outflows. The kinematic ages of the nebular rim and the extended lobes are calculated to be 8400 +/- 500 and 12900 +/- 2800 yr, respectively, which suggests that the lobes were formed at an earlier stage than the nebular rim. This is consistent with expectations that disc-generated jets form immediately after the common envelope phase. A morphological-kinematical model of the central nebula is presented and the best-fitting model is found to have the same inclination as the orbital plane of the central binary system; this is the first proof that a close-binary system directly affects the shaping of its nebula. A Hubble-type flow is well-established in the morphological-kinematical modelling of the observed line profiles and imagery. Two possible formation models for the elongated lobes of Abell 63 are considered, (i) a low-density, pressure-driven jet excavates a cavity in the remnant asymptotic giant branch (AGB) envelope; (ii) high-density bullets form the lobes in a single ballistic ejection event.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nova V458 Vul erupted on 2007 August 8 and reached a visual magnitude of 8.1 a few days later. Ha images obtained 6 weeks before the outburst as part of the IPHAS Galactic plane survey reveal an 18th magnitude progenitor surrounded by an extended nebula. Subsequent images and spectroscopy of the nebula reveal an inner nebular knot increasing rapidly in brightness due to flash ionization by the nova event. We derive a distance of 13 kpc based on light travel time considerations, which is supported by two other distance estimation methods. The nebula has an ionized mass of 0.2 Msolar and a low expansion velocity: this rules it out as ejecta from a previous nova eruption, and is consistent with it being a ~14,000 year old planetary nebula, probably the product of a prior common envelope (CE) phase of evolution of the binary system. The large derived distance means that the mass of the erupting WD component of the binary is high. We identify two possible evolutionary scenarios, in at least one of which the system is massive enough to produce a Type Ia supernova upon merging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron impact excitation rates in Cl III, recently determined with the R-matrix code, are used to calculate electron temperature (T-e) and density (N-e) emission line ratios involving both the nebular (5517.7, 5537.9 Angstrom) and auroral (8433.9, 8480.9, 8500.0 Angstrom) transitions. A comparison of these results with observational data for a sample of planetary nebulae, obtained with the Hamilton Echelle Spectrograph on the 3-m Shane Telescope, reveals that the R-1 = /(5518 Angstrom)/I(5538 Angstrom) intensity ratio provides estimates of N-e in excellent agreement with the values derived from other line ratios in the echelle spectra. This agreement indicates that R-1 is a reliable density diagnostic for planetary nebulae, and it also provides observational support for the accuracy of the atomic data adopted in the line ratio calculations. However the [Cl III] 8433.9 Angstrom line is found to be frequently blended with a weak telluric emission feature, although in those instances when the [Cl III] intensity may be reliably measured, it provides accurate determinations of T-e when ratioed against the sum of the 5518 and 5538 Angstrom line fluxes. Similarly, the 8500.0 Angstrom line, previously believed to be free of contamination by the Earth's atmosphere, is also shown to be generally blended with a weak telluric emission feature. The [CI III] transition at 8480.9 Angstrom is found to be blended with the He I 8480.7 Angstrom line, except in planetary nebulae that show a relatively weak He I spectrum, where it also provides reliable estimates of T-e when ratioed against the nebular lines. Finally, the diagnostic potential of the near-UV [Cl III] lines at 3344 and 3354 Angstrom is briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent R-matrix calculations of electron impact excitation rates in Ar IV are used to calculate the emission-line ratio: ratio diagrams (R1, R2), (R1, R3), and (R1, R4), where K1 = I(4711 Å)/I(4740 Å), R2 = I(7238 Å)/I(4711 + 4740 Å), R3 = I(7263 Å)/I(4711 + 4740 Å), and R4 = I(7171 Å)/I(4711 + 4740 Å), for a range of electron temperatures (Te = 5000-20,000 K) and electron densities (Ne = 10-106 cm-3) appropriate to gaseous nebulae. These diagrams should, in principle, allow the simultaneous determination of Te and Ne from measurements of the [Ar IV] lines in a spectrum. Plasma parameters deduced for a sample of planetary nebulae from (R1, R3) and (R1, R4), using observational date obtained with the Hamilton echelle spectrograph on the 3 m Shane Telescope at the Lick Observatory, are found to show excellent internal consistency and to be in generally good agreement with the values of Te and Ne estimated from other line ratios in the echelle spectra. These results provide observational support for the accuracy of the theoretical ratios and, hence, the atomic data adopted in their derivation. In addition, they imply that the 7171 Å line is not as seriously affected by telluric absorption as previously thought. However, the observed values of R2 are mostly larger than the theoretical high-temperature and density limit, which is due to blending of the Ar IV 7237.54 Å line with the strong C II transition at 7236 Å. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a detailed kinematical analysis of the young compact hourglass-shaped planetary nebula Hb 12. We performed optical imaging and long-slit spectroscopy of Hb 12 using the Manchester echelle spectrometer with the 2.1-m San Pedro Mártir telescope. We reveal, for the first time, the presence of end caps (or knots) aligned with the bipolar lobes of the planetary nebula shell in a deep [NII] ?6584 image of Hb 12. We measured from our spectroscopy radial velocities of ~120kms-1 for these knots. We have derived the inclination angle of the hourglass-shaped nebular shell to be ~65° to the line of sight. It has been suggested that Hb 12's central star system is an eclipsing binary which would imply a binary inclination of at least 80°. However, if the central binary has been the major shaping influence on the nebula, then both nebula and binary would be expected to share a common inclination angle. Finally, we report the discovery of high-velocity knots with Hubble-type velocities, close to the core of Hb 12, observed in Ha and oriented in the same direction as the end caps. Very different velocities and kinematical ages were calculated for the outer and inner knots showing that they may originate from different outburst events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite calls that the school science curriculum should develop among students an ability to understand and respond critically to science-related media reports, very little research has been directed toward an important matter relevant to that aim, namely, how children and young people, untutored, react to science in the news. This study sought, in the context of media coverage of the debate surrounding the planetary status of Pluto, to explore this issue. A questionnaire, completed by 350 students aged between eight and 18, showed just over half of the children and young people were able to write relevantly about the subject though it was the gist not the detail of the story they recounted. There was evidence, nonetheless, that this media-acquired information functioned as active rather than passive knowledge. Students demonstrated relatively few misconceptions and those presented were predominately pre-existing rather than media-derived. As with the wider public, many of the children and young people held strong opinions on Pluto's loss of planethood. Such responses diminished with age, however, with older students expressing a degree of indifference. The paper concludes with a discussion of some implications of the research findings for science instruction.