3 resultados para plan and market
Resumo:
Globally, efforts are underway to reduce anthropogenic greenhouse gas emissions and to adapt to climate change impacts at the local level. However, there is a poor understanding of the relationship between city strategies on climate change mitigation and adaptation and the relevant policies at national and European level. This paper describes a comparative study and evaluation of cross-national policy. It reports the findings of studying the climate change strategies or plans from 200 European cities from Austria, Belgium, Estonia, Finland, France, Germany, Ireland, Italy, Netherlands, Spain and the United Kingdom. The study highlights the shared responsibility of global, European, national, regional and city policies. An interpretation and illustration of the influences from international and national networks and policy makers in stimulating the development of local strategies and actions is proposed. It was found that there is no archetypical way of planning for climate change, and multiple interests and motivations are inevitable. Our research warrants the need for a multi-scale approach to climate policy in the future, mainly ensuring sufficient capacity and resource to enable local authorities to plan and respond to their specific climate change agenda for maximising the management potentials for translating environmental challenges into opportunities.
Resumo:
Background: Previous research has highlighted an ambiguity in understanding cooking related terminology and a number of barriers and facilitators to home meal preparation. However, meals prepared in the home still include convenience products (typically high in sugars, fats and sodium) which can have negative effects on health. Therefore, this study aimed to qualitatively explore: (1) how individuals define cooking from ‘scratch’, and (2) their barriers and facilitators to cooking with basic ingredients.
Methods: 27 semi-structured interviews were conducted with participants (aged 18-58 years) living on the island of Ireland, eliciting definitions of ‘cooking from scratch’ and exploring the reasons participants cook in a particular way. The interviews were professionally transcribed verbatim and Nvivo 10 was used for an inductive thematic analysis.
Results: Our results highlighted that although cooking from ‘scratch’ lacks a single definition, participants viewed it as optimal cooking. Barriers to cooking with raw ingredients included: 1) time pressures; (2) desire to save money; (3) desire for effortless meals; (4) family food preferences; and (5) effect of kitchen disasters. Facilitators included: 1) desire to eat for health and well-being; (2) creative inspiration; (3) ability to plan and prepare meals ahead of time; and (4) greater self-efficacy in one’s cooking ability.
Conclusions: Our findings contribute to understanding how individuals define cooking from ‘scratch’, and barriers and facilitators to cooking with raw ingredients. Interventions should focus on practical sessions to increase cooking self-efficacy; highlight the importance of planning ahead and teach methods such as batch cooking and freezing to facilitate cooking from scratch.
Resumo:
Harnessing solar energy to provide for the thermal needs of buildings is one of the most promising solutions to the global energy issue. Exploiting the additional surface area provided by the building’s façade can significantly increase the solar energy output. Developing a range of integrated and adaptable products that do not significantly affect the building’s aesthetics is vital to enabling the building integrated solar thermal market to expand and prosper. This work reviews and evaluates solar thermal facades in terms of the standard collector type, which they are based on, and their component make-up. Daily efficiency models are presented, based on a combination of the Hottel Whillier Bliss model and finite element simulation. Novel and market available solar thermal systems are also reviewed and evaluated using standard evaluation methods, based on experimentally determined parameters ISO 9806. Solar thermal collectors integrated directly into the facade benefit from the additional wall insulation at the back; displaying higher efficiencies then an identical collector offset from the facade. Unglazed solar thermal facades with high capacitance absorbers (e.g. concrete) experience a shift in peak maximum energy yield and display a lower sensitivity to ambient conditions than the traditional metallic based unglazed collectors. Glazed solar thermal facades, used for high temperature applications (domestic hot water), result in overheating of the building’s interior which can be reduced significantly through the inclusion of high quality wall insulation. For low temperature applications (preheating systems), the cheaper unglazed systems offer the most economic solution. The inclusion of brighter colour for the glazing and darker colour for the absorber shows the lowest efficiency reductions (<4%). Novel solar thermal façade solutions include solar collectors integrated into balcony rails, shading devices, louvers, windows or gutters.