5 resultados para perovskite structure


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, niobium doping is evaluated as a means of enhancing the electrochemical performance of a Sr2Fe1.5Mo0.5O6-δ (SFM) perovskite structure cathode material for intermediate temperature solid oxide fuel cells (IT-SOFCs) applications. As the radius of Nb approximates that of Mo and exhibits +4/+5 mixed valences, its substitution is expected to improve material performance. A series of Sr2Fe1.5Mo0.5-xNbxO6-δ (x = 0.05, 0.10, 0.15, 0.20) cathode materials are prepared and the phase structure, chemical compatibility, microstructure, electrical conductivity, polarization resistance and power generation are systematically characterized. Among the series of samples, Sr2Fe1.5Mo0.4Nb0.10O6-δ (SFMNb0.10) exhibits the highest conductivity value of 30 S cm-1 at 550°C, and the lowest area specific resistance of 0.068 Ω cm2 at 800°C. Furthermore, an anode-supported single cell incorporating a SFMNb0.10 cathode presents a maximum power density of 1102 mW cm-2 at 800°C. Furthermore no obvious performance degradation is observed over 15 h at 750°C with wet H2(3% H2O) as fuel and ambient air as the oxidant. These results demonstrate that SFMNb shows great promise as a novel cathode material for IT-SOFCs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ni-substituted Sr2Fe1.5-xNixMo0.5O6-δ (SFNM) materials have been investigated as anode catalysts for intermediate temperature solid oxide fuel cells. Reduced samples (x = 0.05 and 0.1) maintained the initial perovskite structure after reduction in H2, while metallic nickel particles were detected on the grain surface for x = 0.2 and 0.3 using transmission electron microscopy. Temperature programmed reduction results indicate that the stable temperature for SFNM samples under reduction conditions decreases with Ni content. In addition, X-ray photoelectron spectroscopy analysis suggests that the incorporation of Ni affects the conductivity of SFNM through changing the ratios of Fe3+/Fe2+ and Mo6+/Mo5+. Sr2Fe1.4Ni0.1Mo0.5O6-δ shows the highest electrical conductivity of 20.6 S cm-1 at 800 °C in H2. The performance of this anode was further tested with electrolyte-supported cells, giving 380 mW cm-2 at 750 °C in H2, hence demonstrating that Ni doping in the B-site is beneficial for Sr2Fe1.5Mo0.5O6-δ anode performance. 

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM), a promising electrolyte material for intermediate temperature solid oxide fuel cells, can be sintered to a fully dense state by a flash-sintering technique. In this work, LSGM is sintered by the current-limiting flash-sintering process at 690°C under an electric field of 100 V cm-1, in comparison with up to 1400°C or even higher temperature in conventional furnace sintering. The resultant LSGM samples are investigated by scanning electron microscopy, X-ray diffraction, and electrochemical impedance spectroscopy. The SEM images exhibit well-densified microstructures while XRD results show that the perovskite structure after flash-sintering does not changed. EIS results show that the conductivity of LSGM sintered by the current-limiting flash-sintering process increases with sintering current density value. The conductivity of samples sintered at 120 mA mm-2 reaches 0.049 σ cm-1 at 800°C, which is approximate to the value of conventional sintered LSGM samples at 1400°C. Additionally, the flash-sintering process is interpreted by Joule heating theory. Therefore, the current-limiting flash-sintering technique is proved to be an energy-efficient and eligible approach for the densification of LSGM and other materials requiring high sintering temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epitaxial thin films Of various bismuth-layered perovskites SrBi(2)Ta(2)O(9), Bi(4)Ti(3)O(12), BaBi(4)Ti(4)O(15), and Ba(2)Bi(4)Ti(5)O(18) were deposited by pulsed laser deposition onto epitaxial conducting LaNiO(3) or SrRuO(3) electrodes on single crystalline SrTiO(3) substrates with different crystallographic orientations or on top of epitaxial buffer layers on (100) silicon. The conductive perovskite electrodes and the epitaxial ferroelectric films are strongly influenced by the nature of the substrate, and bismuth-layered perovskite ferroelectric films with mixed (100), (110)- and (001)-orientations as well as with uniform (001)-, (116)- and (103)- orientations have been obtained. Structure and morphology investigations performed by X-ray diffraction analysis, scanning probe microscopy, and transmission electron microscopy reveal the different epitaxial relationships between films and substrates. A clear correlation of the crystallographic orientation of the epitaxial films with their ferroelectric properties is illustrated by macroscopic and microscopic measurements of epitaxial bismuth-layered perovskite thin films of different crystallographic orientations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper strontium-site-deficient Sr2Fe1.4Co0.1Mo0.5O6-δ-based perovskite oxides (SxFCM) were prepared and evaluated as the cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). All samples exhibited a cubic phase structure and the lattice shrinked with increasing the Sr-deficiency as shown in XRD patterns. XPS results determined that the transition elements (Co/Fe/Mo) in SxFCM oxides were in a mixed valence state, demonstrating the small polaron hopping conductivity mechanism existed. Among the samples, S1.950FCM presented the lowest coefficient of thermal expansion of 15.62 × 10-6 K-1, the highest conductivity value of 28 S cm-1 at 500 °C, and the lowest interfacial polarization resistance of 0.093 Ω cm2 at 800 °C, respectively. Furthermore, an anode-supported single cell with a S1.950FCM cathode was prepared, demonstrating a maximum power density of 1.16 W cm-2 at 800 °C by using wet H2 (3% H2O) as the fuel and ambient air as the oxidant. These results indicate that the introduction of Sr-deficiency can dramatically improve the electrochemical performance of Sr2Fe1.4Co0.1Mo0.5O6-δ, showing great promise as a novel cathode candidate material for IT-SOFCs.