124 resultados para peak load shaving
Resumo:
A numerical method is developed to simulate complex two-dimensional crack propagation in quasi-brittle materials considering random heterogeneous fracture properties. Potential cracks are represented by pre-inserted cohesive elements with tension and shear softening constitutive laws modelled by spatially varying Weibull random fields. Monte Carlo simulations of a concrete specimen under uni-axial tension were carried out with extensive investigation of the effects of important numerical algorithms and material properties on numerical efficiency and stability, crack propagation processes and load-carrying capacities. It was found that the homogeneous model led to incorrect crack patterns and load–displacement curves with strong mesh-dependence, whereas the heterogeneous model predicted realistic, complicated fracture processes and load-carrying capacity of little mesh-dependence. Increasing the variance of the tensile strength random fields with increased heterogeneity led to reduction in the mean peak load and increase in the standard deviation. The developed method provides a simple but effective tool for assessment of structural reliability and calculation of characteristic material strength for structural design.
Resumo:
Demand Side Management (DSM) programmes are designed to shift electrical loads from peak times. Demand Response (DR) algorithms automate this process for controllable loads. DR can be implemented explicitly in terms of Peak to Average Ratio Reduction (PARR), in which case the maximum peak load is minimised over a prediction horizon by manipulating the amount of energy given to controllable loads at different times. A hierarchical predictive PARR algorithm is presented here based on Dantzig-Wolfe decomposition. © 2013 IEEE.
Resumo:
Sustainability can be described as having three interlinked strands, known as the ‘trias energetica’, without which resilience is difficult to achieve. These strands are environmental, social and economic: and if taken as indicators, the suburbs of North Belfast are very poorly performing indeed. Places such as Ligoneal and Glen Cairn have poor housing stock energetically, and also little economic activity. This paper describes propositional work completed by Queens University and Belfast City Council as part of the UK’s Technology Strategy Board’s Future Cities Programme, which aimed to develop new synergies in these neighbourhoods by the insertion of closed cycle economies.
By utilising a research by design methodology, the paper develops a process-based and phased design to develop a new emergent form to these neighbourhoods, one in which new productive systems are embedded into the city, at a small-scales. These include a peak-load hydro-electric project in Ligoneal; a productive landscape in Glen Cairn and a city-wide energy refurbishment utilising neighbourhood waste streams.
These designs allow for a roadmap for development to be created that could change the modus operandi of an area over a relatively short period of time, and show that even modest investments of productive technologies at a local scale could fundamentally change the form and the economic and environmental operation of the city in the future, and create a new resilient city, one that can be less externally dependent and more socially just.
Resumo:
By utilising a research by design methodology, the paper develops a process-based and phased design to develop a new emergent form to these neighbourhoods, one in which new productive systems are embedded into the city, at a small-scales. These include a peak-load hydro-electric project in Ligoneal; a productive landscape in Glen Cairn and a city-wide energy refurbishment utilising neighbourhood waste streams.
The three projects illustrate different ways in which place-based solutions can enact urban transformation through a process of rigorous visualisation of process, and its attendant changes in content and form of the neighbourhood, These designs, based around a process-based strategy plan, allow for a roadmap for development to be created that could change the modus operandi of an area over a relatively short period of time,. The paper demonstrates that even modest investments of productive technologies at a local scale can fundamentally change the form and the economic and environmental operation of the city in the future, and create a new resilient city, one that can have resilience built-in. This resilience allows the neighbourhood to be less externally dependent on resources, economically active and more socially just.
Resumo:
Many timber structures may require strengthening due to either decay and aging or an increase of load. This paper presents an experimental study in which eleven timber beams were tested, including three unstrengthened reference beams and eight beams strengthened with NSM CFRP bars. The test parameters include the position of NSM (tensile face or the bottom of the sides), the number of CFRP bars (1 or 2), and additional anchorage of NSM CFRP bars (steel wire U anchors or CFRP U strips). The test results show that the ultimate flexural strength of the timber beams were increased by 14%∼85% with an average of 47% due to NSM CFRP bar strengthening. Their deflection corresponding to the peak load was increased by 33% in average.
Resumo:
This paper describes a fridge-freezer smart load model, which responds to external signals from the wholesale electricity market to support grid operations while switching the fridge-freezer on and off to maintain optimum operations for the owner. The key parameters of the model are the appliance dimensions, thermal mass, the fridge and freezer thermal time constants and the compressor power consumption. The model demonstrates that control strategies help to minimise load at times when the grid is under stress from high demand, and shift some load to a lower wholesale price or when there is excess renewable power. Three control strategies are proposed, based on peak shaving and valley filling, price signals and wind availability.
Resumo:
The need for fast response demand side participation (DSP) has never been greater due to increased wind power penetration. White domestic goods suppliers are currently developing a `smart' chip for a range of domestic appliances (e.g. refrigeration units, tumble dryers and storage heaters) to support the home as a DSP unit in future power systems. This paper presents an aggregated population-based model of a single compressor fridge-freezer. Two scenarios (i.e. energy efficiency class and size) for valley filling and peak shaving are examined to quantify and value DSP savings in 2020. The analysis shows potential peak reductions of 40 MW to 55 MW are achievable in the Single wholesale Electricity Market of Ireland (i.e. the test system), and valley demand increases of up to 30 MW. The study also shows the importance of the control strategy start time and the staggering of the devices to obtain the desired filling or shaving effect.
Resumo:
A criterion is derived for delamination onset in transversely isotropic laminated plates under small mass, high velocity impact. The resulting delamination threshold load is about 21% higher than the corresponding quasi-static threshold load. A closed form approximation for the peak impact load is then used to predict the delamination threshold velocity. The theory is validated for a range of test cases by comparison with 3D finite element simulation using LS-DYNA and a newly developed interface element to model delamination onset and growth. The predicted delamination threshold loads and velocities are in very good agreement with the finite element simulations. Good agreement is also shown in a comparison with published experimental results. In contrast to quasi-static impacts, delamination growth occurs under a rapidly decreasing load. Inclusion of finite thickness effects and a proper description of the contact stiffness are found to be vital for accurate prediction of the delamination threshold velocity
Resumo:
Grid operators and electricity retailers in Ireland manage peak demand, power system balancing and grid congestion by offering relevant incentives to consumers to reduce or shift their load. The need for active consumers in the home using smart appliances has never been greater, due to increased variable renewable generation and grid constraints. In this paper an aggregated model of a single compressor fridge-freezer population is developed. A price control strategy is examined to quantify and value demand response savings during a representative winter and summer week for Ireland in 2020. The results show an average reduction in fridge-freezer operating cost of 8.2% during winter and significantly lower during summer in Ireland. A peak reduction of at least 68% of the average winter refrigeration load is achieved consistently during the week analysed using a staggering control mode. An analysis of the current ancillary service payments confirms that these are insufficient to ensure widespread uptake by the small consumer, and new mechanisms need to be developed to make becoming an active consumer attractive. Demand response is proposed as a new ancillary service called ramping capability, as the need for this service will increase with more renewable energy penetration on the power system.
Time for treating bone fracture using rhBMP-2: a randomised placebo controlled mouse fracture trial.
Resumo:
Although the mechanisms of osteoinduction by bone morphogenic proteins (BMPs) are increasingly understood, the most appropriate time to administer BMPs exogenously is yet to be clarified.The purpose of this study was to investigate when BMP may be administered to a fracture arena to maximise the enhancement of healing.Forty mice with externally fixed left femoral fractures were randomised into four groups: Group I, the control group was given a placebo of 30 ll saline at day 0; Groups II, III and IV were given 30 ll saline plus 2.5 lg rhBMP-2, at post-operative days 0, 4 or 8, respectively.Sequential radiographs were taken at days 0, 8, 16.On day 22 the mice were sacrificed and both femora were harvested for biomechanical assessment in 3-point bending and histological evaluation.Radiographic analysis indicated that healing of fractures in Groups II and III was significantly greater (p <0.05) than those in Groups I and IV, at both 16 and 22 days post-fracture. The highest median bone mineral content at the fracture site was evidenced in Group III and II.Furthermore, Group III also had the highest relative ultimate load values, followed by Groups II, IV and I.Greater percentage peak loads were observed between Group I and both Groups II and III (p <0.05). Histological examination confirmed that at 22 days post-fracture, only fractures in Groups II and III had united with woven bone, and Groups I and IV still had considerable amounts of fibrous tissue and cartilage at the fracture gap.Data presented herein indicates that there is a time after fracture when rhBMP administration is most effective, and this may be at the time of surgery as well as in the early fracture healing phases.
Resumo:
Effective collision strengths are presented for the Fe-peak element Fe III at electron temperatures (Te in degrees Kelvin) in the range 2 × 103 to 1 × 106. Forbidden transitions results are given between the 3d6, 3d54s, and the 3d54p manifolds applicable to the modeling of laboratory and astrophysical plasmas.
Resumo:
A series of short and long term service load tests were undertaken on the sixth floor of the full-scale, seven storey, reinforced concrete building at the Large Building Test Facility of the Building Research Establishment at Cardington. By using internally strain gauged reinforcing bars cast into an internal and external floor bay during the construction process it was possible to gain a detailed record of slab strains resulting from the application of several arrangements of test loads. Short term tests were conducted in December 1998 and long term monitoring then ensued until April 2001. This paper describes the test programmes and presents results to indicate slab behaviour for the various loading regimes.
Resumo:
This paper presented results from a details and comprehensive simulation using finite element method of the practical operation of an electrical machine. The results it displayed have been used in practice to design more efficient equipment.
Resumo:
A refined theoretical approach has been developed to study the double-differential cross sections (DDCS's) in proton-helium collisions as a function of the ratio of ionized electron velocity to the incident proton velocity. The refinement is done in the present coupled-channel calculation by introducing a continuum distorted wave in the final state coupled with discrete states including direct as well as charge transfer channels. It is confirmed that the electron-capture-to-the-continuum (ECC) peak is slightly shifted to a lower electron velocity than the equivelocity position. Comparing measurements and classical trajectory Monte Carlo (CTMC) calculations at 10 and 20 keV proton energies, excellent agreement of the ECC peak heights is achieved at both energies. However, a minor disagreement in the peak positions between the present calculation and the CTMC results is noted. A smooth behavior of the DDCS is found in the present calculation on both sides of the peak whereas the CTMC results show some oscillatory behavior particularly to the left of the peak, associated with the statistical nature of CTMC calculations.