12 resultados para parallelization
Resumo:
Speeding up sequential programs on multicores is a challenging problem that is in urgent need of a solution. Automatic parallelization of irregular pointer-intensive codes, exempli?ed by the SPECint codes, is a very hard problem. This paper shows that, with a helping hand, such auto-parallelization is possible and fruitful. This paper makes the following contributions: (i) A compiler framework for extracting pipeline-like parallelism from outer program loops is presented. (ii) Using a light-weight programming model based on annotations, the programmer helps the compiler to ?nd thread-level parallelism. Each of the annotations speci?es only a small piece of semantic information that compiler analysis misses, e.g. stating that a variable is dead at a certain program point. The annotations are designed such that correctness is easily veri?ed. Furthermore, we present a tool for suggesting annotations to the programmer. (iii) The methodology is applied to autoparallelize several SPECint benchmarks. For the benchmark with most parallelism (hmmer), we obtain a scalable 7-fold speedup on an AMD quad-core dual processor. The annotations constitute a parallel programming model that relies extensively on a sequential program representation. Hereby, the complexity of debugging is not increased and it does not obscure the source code. These properties could prove valuable to increase the ef?ciency of parallel programming.
Resumo:
The efficient development of multi-threaded software has, for many years, been an unsolved problem in computer science. Finding a solution to this problem has become urgent with the advent of multi-core processors. Furthermore, the problem has become more complicated because multi-cores are everywhere (desktop, laptop, embedded system). As such, they execute generic programs which exhibit very different characteristics than the scientific applications that have been the focus of parallel computing in the past.
Implicitly parallel programming is an approach to parallel pro- gramming that promises high productivity and efficiency and rules out synchronization errors and race conditions by design. There are two main ingredients to implicitly parallel programming: (i) a con- ventional sequential programming language that is extended with annotations that describe the semantics of the program and (ii) an automatic parallelizing compiler that uses the annotations to in- crease the degree of parallelization.
It is extremely important that the annotations and the automatic parallelizing compiler are designed with the target application do- main in mind. In this paper, we discuss the Paralax approach to im- plicitly parallel programming and we review how the annotations and the compiler design help to successfully parallelize generic programs. We evaluate Paralax on SPECint benchmarks, which are a model for such programs, and demonstrate scalable speedups, up to a factor of 6 on 8 cores.
Resumo:
Per-core scratchpad memories (or local stores) allow direct inter-core communication, with latency and energy advantages over coherent cache-based communication, especially as CMP architectures become more distributed. We have designed cache-integrated network interfaces, appropriate for scalable multicores, that combine the best of two worlds – the flexibility of caches and the efficiency of scratchpad memories: on-chip SRAM is configurably shared among caching, scratchpad, and virtualized network interface (NI) functions. This paper presents our architecture, which provides local and remote scratchpad access, to either individual words or multiword blocks through RDMA copy. Furthermore, we introduce event responses, as a technique that enables software configurable communication and synchronization primitives. We present three event response mechanisms that expose NI functionality to software, for multiword transfer initiation, completion notifications for software selected sets of arbitrary size transfers, and multi-party synchronization queues. We implemented these mechanisms in a four-core FPGA prototype, and measure the logic overhead over a cache-only design for basic NI functionality to be less than 20%. We also evaluate the on-chip communication performance on the prototype, as well as the performance of synchronization functions with simulation of CMPs with up to 128 cores. We demonstrate efficient synchronization, low-overhead communication, and amortized-overhead bulk transfers, which allow parallelization gains for fine-grain tasks, and efficient exploitation of the hardware bandwidth.
Resumo:
FastFlow is a programming framework specifically targeting cache-coherent shared-memory multi-cores. It is implemented as a stack of C++ template libraries built on top of lock-free (and memory fence free) synchronization mechanisms. Its philosophy is to combine programmability with performance. In this paper a new FastFlow programming methodology aimed at supporting parallelization of existing sequential code via offloading onto a dynamically created software accelerator is presented. The new methodology has been validated using a set of simple micro-benchmarks and some real applications. © 2011 Springer-Verlag.
Resumo:
The exponential growth in user and application data entails new means for providing fault tolerance and protection against data loss. High Performance Com- puting (HPC) storage systems, which are at the forefront of handling the data del- uge, typically employ hardware RAID at the backend. However, such solutions are costly, do not ensure end-to-end data integrity, and can become a bottleneck during data reconstruction. In this paper, we design an innovative solution to achieve a flex- ible, fault-tolerant, and high-performance RAID-6 solution for a parallel file system (PFS). Our system utilizes low-cost, strategically placed GPUs — both on the client and server sides — to accelerate parity computation. In contrast to hardware-based approaches, we provide full control over the size, length and location of a RAID array on a per file basis, end-to-end data integrity checking, and parallelization of RAID array reconstruction. We have deployed our system in conjunction with the widely-used Lustre PFS, and show that our approach is feasible and imposes ac- ceptable overhead.
Resumo:
Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schrödinger equation for low-dimensionality systems.