1 resultado para pacs: computer networks and technology
Filtro por publicador
- Aberdeen University (1)
- Academic Research Repository at Institute of Developing Economies (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Applied Math and Science Education Repository - Washington - USA (2)
- Archive of European Integration (342)
- Aston University Research Archive (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- Biodiversity Heritage Library, United States (13)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (27)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CentAUR: Central Archive University of Reading - UK (51)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (4)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (112)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (18)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (4)
- Digital Peer Publishing (9)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (12)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Instituto Politécnico do Porto, Portugal (9)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (126)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (11)
- National Center for Biotechnology Information - NCBI (5)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (6)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (10)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- Scielo Saúde Pública - SP (10)
- Scielo Uruguai (1)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (17)
- Universidade do Minho (3)
- Universidade Federal do Pará (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (25)
- Université de Montréal, Canada (2)
- University of Connecticut - USA (2)
- University of Michigan (13)
- University of Queensland eSpace - Australia (13)
- University of Southampton, United Kingdom (9)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
Stealthy attackers move patiently through computer networks - taking days, weeks or months to accomplish their objectives in order to avoid detection. As networks scale up in size and speed, monitoring for such attack attempts is increasingly a challenge. This paper presents an efficient monitoring technique for stealthy attacks. It investigates the feasibility of proposed method under number of different test cases and examines how design of the network affects the detection. A methodological way for tracing anonymous stealthy activities to their approximate sources is also presented. The Bayesian fusion along with traffic sampling is employed as a data reduction method. The proposed method has the ability to monitor stealthy activities using 10-20% size sampling rates without degrading the quality of detection.