5 resultados para p11
Resumo:
In our genomic scan of 265 Irish families with schizophrenia, we have thus far generated modest evidence for the presence of vulnerability genes in three chromosomal regions, i.e., 5q21-q31, 6p24-p22, and 8p22-p21. Outside of those regions, of all markers tested to date, D10S674 produced one of the highest pairwise heterogeneity lod (H-LOD) scores, 3.2 (P = 0.0004), when initially tested on a subset of 88 families. We then tested a total of 12 markers across a region of 32 centimorgans in region 10p15-p11 of all 265 families. The strongest evidence for linkage occurred assuming an intermediate phenotypic definition, and a recessive genetic model. The largest pairwise H-LOD score was found with marker D10S2443 (maximum 1.95, P = 0.005). Using multipoint H-LODs, we found a broad peak (maximum 1.91, P = 0.006) extending over the 11 centimorgans from marker D10S674 to marker D10S1426. Multipoint nonparametric linkage analysis produced a much broader peak, but with the maximum in the same location near D10S2443 (maximum z = 1.88, P = 0.03). Based on estimates from the multipoint analysis, this putative vulnerability locus appears to be segregating in 5-15% of the families studied, but this estimate should be viewed with caution. When evaluated in the context of our genome scan results, the evidence suggests the possibility of a fourth vulnerability locus for schizophrenia in these Irish families, in region 10p15-p11.
Resumo:
Interaction of vascular cells with the laminin component of basement membranes is important for normal cell function. Likewise, abnormal interactions may have a critical role in vascular pathology. It has been previously demonstrated that the 67 kDa laminin receptor (67LR) is expressed at high levels during proliferative retinopathy in a mouse model and in the current study we have examined 67LR in the neonatal mouse to determine if this receptor plays a role in aspects of developmental angiogenesis in the developing murine retina. Groups of C57/BL6 mice were killed at postnatal day P1, P3, P5, P7, P9 and P11 to assess the retinal vasculature. A number of mice were perfused with FITC-dextran and the eyes removed, fixed in 4% paraformaldehyde (PFA) and flat-mounted for confocal scanning laser microscopy. The eyes from the remaining mice were either placed in 4% PFA and embedded in paraffin-wax, or had the neural retina dissected off and total RNA or protein extracted. Immunofluorescence, in situ hybridization, quantitative reverse transcriptase polymerase chain reaction and Western blotting analysis were employed to locate and determine expression levels of 67LR. Both 67LR mRNA and protein expression showed a characteristic bi-phasic expression pattern which correlated with key stages of retinal vascular development in the murine retina. 67LR showed high expression levels at P1 (P < 0.05) (correlating with superficial vascular plexus formation) and at P7 (P < 0.05) (correlating with deep vascular plexus formation). Conversely, 67LR expression was decreased when active angiogenic activity was lowest. Significantly, optical sectioning of retinal flat-mounts revealed high levels of 67LR expression in developing segments of both superficial and deep capillary plexi, a pattern which co-localized strongly with laminin. 67LR is regulated during post-natal development of the retinal vasculature. High levels of 67LR during the two well-defined phases of retinal capillary plexus formation suggests that this receptor may play an important role in retinal angiogenesis.
Resumo:
PURPOSE. Vascular endothelial growth factor (VEGF)-A and placental growth factor (PIGF) are members of a large group of homologous peptides identified as the VEGF family. Although VEGF-A is known to act as a potent angiogenic peptide in the retina, the vasoactive function of PIGF in this tissue is less well defined. This study has sought to elucidate the expression patterns and modulatory role of these growth factors during retinal vascular development and hyaloid regression in the neonatal mouse. METHODS. C57BL6J mice were killed at postnatal days (P)1, P3, P5, P7, P9, and P11. The eyes were enucleated and processed for in situ hybridization and immunocytochemistry and the retinas extracted for total protein or RNA. Separate groups of neonatal mice were also injected intraperitoneally daily from P2 through P9 with either VEGF-neutralizing antibody, PIGF-neutralizing antibody, isotype immunoglobulin (Ig)-G, or phosphate-buffered saline (PBS). The mice were then perfused with fluorescein isothiocyanate (FITC)-dextran, and the eyes were subsequently embedded in paraffin wax or flat mounted. RESULTS. Quantitative (real-time) reverse transcription-polymerase chain reaction (RT-PCR) demonstrated similar expression patterns of VEGF-A and PIGF mRNA during neonatal retinal development, although the fluctuation between time periods was greater overall for VEGF-A. The localization of VEGF-A and PIGF in the retina, as revealed by in situ hybridization and immunohistochemistry, was also similar. Neutralization of VEGF-A caused a significant reduction in the hyaloid and retinal vasculature, whereas PIGF antibody treatment caused a marked persistence of the hyaloid without significantly affecting retinal vascular development. CONCLUSIONS. Although having similar expression patterns in the retina, these growth factors appear to have distinct modulatory influences during normal retinal vascular development and hyaloid regression.
Resumo:
From our linkage study of Irish families with a high density of schizophrenia, we have previously reported evidence for susceptibility genes in regions 5q21-31, 6p24-21, 8p22-21, and 10p15-p11. In this report, we describe the cumulative results from independent genome scans of three a priori random subsets of 90 families each, and from multipoint analysis of all 270 families in ten regions. Of these ten regions, three (13q32, 18p11-q11, and 18q22-23) did not generate scores above the empirical baseline pairwise scan results, and one (6q13-26) generated a weak signal. Six other regions produced more positive pairwise and multipoint results. They showed the following maximum multipoint H-LOD (heterogeneity LOD) and NPL scores: 2p14-13: 0.89 (P = 0.06) and 2.08 (P = 0.02), 4q24-32: 1.84 (P = 0.007) and 1.67 (P = 0.03), 5q21-31: 2.88 (P= 0.0007), and 2.65 (P = 0.002), 6p25-24: 2.13 (P = 0.005) and 3.59 (P = 0.0005), 6p23: 2.42 (P = 0.001) and 3.07 (P = 0.001), 8p22-21: 1.57 (P = 0.01) and 2.56 (P = 0.005), 10p15-11: 2.04 (P = 0.005) and 1.78 (P = 0.03). The degree of 'internal replication' across subsets differed, with 5q, 6p, and 8p being most consistent and 2p and 10p being least consistent. On 6p, the data suggested the presence of two susceptibility genes, in 6p25-24 and 6p23-22. Very few families were positive on more than one region, and little correlation between regions was evident, suggesting substantial locus heterogeneity. The levels of statistical significance were modest, as expected from loci contributing to complex traits. However, our internal replications, when considered along with the positive results obtained in multiple other samples, suggests that most of these six regions are likely to contain genes that influence liability to schizophrenia.
Resumo:
BACKGROUND: Cigarette smoking is one of the most significant risk factors in the development and further advancement of inflammatory periodontal disease, however, the role of either nicotine or its primary metabolite cotinine in the progression of periodontitis is unclear. This study aimed to investigate the effects of nicotine and cotinine on the attachment and growth of fibroblasts derived from human periodontal ligament (PDL).
METHODS: Primary cultures were prepared from the roots of extracted premolar teeth. Cells were used at both low (P3 to P5) and high (P11 to P13) passage. Cell numbers were determined over 14 days using either the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay or with a Coulter counter. Cultures were exposed to culture medium supplemented with 1) 15% fetal calf serum (FCS) only; 2) 1% FCS only; 3) 1% FCS and nicotine (concentration range 5 ng/ml to 10 mg/ml); or 4) 1% FCS and cotinine (concentration range 0.5 ng/ml to 10 microg/ml).
RESULTS: Nicotine significantly (P <0.05, by ANOVA) inhibits attachment and growth of low passage cells at concentrations >1 mg/ml and high passage PDL fibroblasts at concentrations >0.5 mg/ml. Cotinine, at the highest concentration used (10 microg/ml), appeared to inhibit attachment and growth of both low and high passage fibroblasts but this was not statistically significant (P >0.05, by ANOVA).
CONCLUSIONS: Tobacco products inhibit attachment and growth of human PDL fibroblasts. This may partly explain the role of these substances in the progression of periodontitis.