2 resultados para oxygen-sensing pathway


Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Congenital erythrocytosis is by definition present from birth. Patients frequently present in childhood or as young adults and a family history may be present. The erythrocytosis can be primary where there is a defect in the erythroid compartment of secondary where increased erythropoietin production produced due to the defect leads to an erythrocytosis.

MATERIAL AND METHODS: Primary causes include erythropoietin receptor mutations. Congenital secondary causes include mutations in the genes involved in the oxygen-sensing pathway and haemoglobins with abnormal oxygen affinity. Investigations for the cause include an erythropoietin level, oxygen dissociation curve, haemoglobin electrophoresis and sequencing for known gene variants.

RESULTS: The finding of a known or new molecular variant confirms a diagnosis of congenital erythrocytosis. A congenital erythrocytosis may be an incidental finding but nonspecific symptoms are described. Major thromboembolic events have been noted in some cases. Low-dose aspirin and venesection are therapeutic manoeuvres which should be considered in managing these patients.

CONCLUSIONS: Rare individuals presenting often at a young age may have a congenital erythrocytosis. Molecular investigation may reveal a lesion. However, in the majority, currently no defect is identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mevalonate pathway is of important clinical, pharmaceutical and biotechnological relevance. However, lack of the understanding of the phosphorylation mechanism of the kinases in this pathway has limited rationally engineering the kinases in industry. Here the phosphorylation reaction mechanism of a representative kinase in the mevalonate pathway, phosphomevalonate kinase, was studied by using molecular dynamics and hybrid QM/MM methods. We find that a conserved residue (Ser106) is reorientated to anchor ATP via a stable H-bond interaction. In addition, Ser213 located on the α-helix at the catalytic site is repositioned to further approach the substrate, facilitating the proton transfer during the phosphorylation. Furthermore, we elucidate that Lys101 functions to neutralize the negative charge developed at the β-, γ-bridging oxygen atom of ATP during phosphoryl transfer. We demonstrate that the dissociative catalytic reaction occurs via a direct phosphorylation pathway. This is the first study on the phosphorylation mechanism of a mevalonate pathway kinase. The elucidation of the catalytic mechanism not only sheds light on the common catalytic mechanism of GHMP kinase superfamily, but also provides the structural basis for engineering the mevalonate pathway kinases to further exploit their applications in the production of a wide range of fine chemicals such as biofuels or pharmaceuticals.