4 resultados para organophosphate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Active transport of substrates across cytoplasmic membranes is of great physiological, medical and pharmaceutical importance. The glycerol-3-phosphate (G3P) transporter (GlpT) of the E. coli inner membrane is a secondary active antiporter from the ubiquitous major facilitator superfamily that couples the import of G3P to the efflux of inorganic phosphate (Pi) down its concentration gradient. Integrating information from a novel combination of structural, molecular dynamics simulations and biochemical studies, we identify the residues involved directly in binding of substrate to the inward-facing conformation of GlpT, thus defining the structural basis for the substrate-specificity of this transporter. The substrate binding mechanism involves protonation of a histidine residue at the binding site. Furthermore, our data suggest that the formation and breaking of inter- and intradomain salt bridges control the conformational change of the transporter that accompanies substrate translocation across the membrane. The mechanism we propose may be a paradigm for organophosphate:phosphate antiporters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seed mussels (Mytilus edulis) were exposed to a range of pesticides and PCBs, several of which caused a reduction in byssal attachment at higher concentrations. In queen scallops (Chlamys opercularis) byssus formation was similarly affected although this species was more sensitive than M. edulis. The sensitivity of mussels was greater at higher temperatures and decreased with increase in size. Of the compounds tested Endosulfan (organochlorine) was the most toxic, causing a 50% reduction in byssal attachment after 24 h at 0•45 mg/l. Trichlorphon (organophosphate) was the least toxic and did not affect byssal attachment at concentrations up to 30 mg/l. The probable cause of decreased byssal attachment is a reduction in pedal activity, although it is possible that direct interference with the synthesis or combination of byssus components may be involved. It is suggested that byssogenesis tests offer a rapid and convenient technique for the routine screening of potential marine pollutants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphonates constitute a class of natural products that mimic the properties of the more common organophosphate ester metabolite yet are not readily degraded owing to the direct linkage of the phosphorus atom to the carbon atom. Phosphonate hydrolases have evolved to allow bacteria to utilize environmental phosphonates as a source of carbon and phosphorus. The work reported in this paper examines one such enzyme, phosphonoacetate hydrolase. By using a bioinformatic approach, we circumscribed the biological range of phosphonoacetate hydrolase to a select group of bacterial species from different classes of Proteobacteria. In addition, using gene context, we identified a novel 2-aminoethylphosphonate degradation pathway in which phosphonoacetate hydrolase is a participant. The X-ray structure of phosphonoformate-bound phosphonoacetate hydrolase was determined to reveal that this enzyme is most closely related to nucleotide pyrophosphatase/diesterase, a promiscuous two-zinc ion metalloenzyme of the alkaline phosphatase enzyme superfamily. The X-ray structure and metal ion specificity tests showed that phosphonoacetate hydrolase is also a two-zinc ion metalloenzyme. By using site-directed mutagenesis and P-32-labeling strategies, the catalytic nucleophile was shown to be Thr64. A structure-guided, site-directed mutation-based inquiry of the catalytic contributions of active site residues identified Lys126 and Lys128 as the most likely candidates for stabilization of the aci-carboxylate dianion leaving group. A catalytic mechanism is proposed which combines Lys12/Lys128 leaving group stabilization with zinc ion activation of the Thr64 nucleophile and the substrate phosphoryl group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential use of biochemical and physiological responses as biomarkers of organophosphate exposure and/or effect were assessed in the shore crab (Carcinus maenas). Male crabs were assigned to one of four dimethoate treatments (0, 0.5, 1.0 or 2.0 mg 1(-1)). Cardiac activity was measured non-invasively before and during dimethoate exposure using automated interpulse duration assessment. Heart rates decreased significantly in a concentration-dependent manner (p