39 resultados para orbital cortex


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lesions involving the anterior thalamic nuclei stopped immediate early gene (IEG) activity in specific regions of the rat retrosplenial cortex, even though there were no apparent cytoarchitectonic changes. Discrete anterior thalamic lesions were made either by excitotoxin (Experiment 1) or radiofrequency (Experiment 2) and, following recovery, the rats foraged in a radial-arm maze in a novel room. Measurements made 6-12 weeks postsurgery showed that, in comparison with surgical controls, the thalamic lesions produced the same, selective patterns of Fos changes irrespective of method. Granular (caudal granular cortex and rostral granular cortex), but not dysgranular (dysgranular cortex), retrosplenial cortex showed a striking loss of Fos-positive cells. While a loss of between 79 and 89% of Fos-positive cells was found in the superficial laminae, the deeper layers appeared normal. In Experiments 3 and 4, rats 9-10 months postsurgery were placed in an activity box for 30 min. Anterior thalamic lesions (Experiment 3) led to a pronounced IEG decrease of both Fos and zif268 throughout the retrosplenial cortex that now included the dysgranular area. These IEG losses were found even though the same regions appeared normal using standard histological techniques. Lesions of the postrhinal cortex (Experiment 4) did not bring about a loss of retrosplenial IEG activity even though this region is also reciprocally connected with the retrosplenial cortex. This selective effect of anterior thalamic damage upon retrosplenial activity may both amplify the disruptive effects of anterior thalamic lesions and help to explain the posterior cingulate hypoactivity found in Alzheimer's disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rats rapidly learned to find a submerged platform in a water maze at a constant distance and angle from the start point, which changed on every trial. The rats performed accurately in the light and dark, but prior rotation disrupted the latter condition. The rats were then retested after receiving cytotoxic hippocampal or retrosplenial cortex lesions. Retrosplenial lesions had no apparent effect in either the light or dark. Hippocampal lesions impaired performance in both conditions but spared the ability to locate a platform placed in the center of the pool. A hippocampal deficit emerged when this pool-center task was run in the dark. The spatial effects of hippocampal damage extend beyond allocentric tasks to include aspects of idiothetic guidance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One can partially eliminate motor skills acquired through practice in the hours immediately following practice by applying repetitive transcranial stimulation (rTMS) over the primary motor cortex. The disruption of acquired levels of performance has been demonstrated on tasks that are ballistic in nature. The authors investigated whether motor recall on a discrete aiming task is degraded following a disruption of the primary motor cortex induced via rTMS. Participants (N = 16) maintained acquired performance levels and patterns of muscle activity following the application of rTMS. despite a reduction in corticospinal excitability. Disruption of the primary motor cortex during a consolidation period did not influence the retention of acquired skill in this type of discrete visuomotor task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The `hot Jupiters' that abound in lists of known extrasolar planets are thought to have formed far from their host stars, but migrate inwards through interactions with the proto-planetary disk from which they were born, or by an alternative mechanism such as planet-planet scattering. The hot Jupiters closest to their parent stars, at orbital distances of only ~0.02 astronomical units, have strong tidal interactions, and systems such as OGLE-TR-56 have been suggested as tests of tidal dissipation theory. Here we report the discovery of planet WASP-18b with an orbital period of 0.94days and a mass of ten Jupiter masses (10MJup), resulting in a tidal interaction an order of magnitude stronger than that of planet OGLE-TR-56b. Under the assumption that the tidal-dissipation parameter Q of the host star is of the order of 106, as measured for Solar System bodies and binary stars and as often applied to extrasolar planets, WASP-18b will be spiralling inwards on a timescale less than a thousandth that of the lifetime of its host star. Therefore either WASP-18 is in a rare, exceptionally short-lived state, or the tidal dissipation in this system (and possibly other hot-Jupiter systems) must be much weaker than in the Solar System.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several authors have shown that precise measurements of transit time variations of exoplanets can be sensitive to other planetary bodies, such as exo-moons. In addition, the transit timing variations of the exoplanets closest to their host stars can provide tests of tidal dissipation theory. These studies, however, have not considered the effect of the host star. There is a large body of observational evidence that eclipse times of binary stars can vary dramatically due to variations in the quadrupole moment of the stars driven by stellar activity. In this paper, we investigate and estimate the likely impact such variations have on the transit times of exoplanets. We find in several cases that such variations should be detectable. In particular, the estimated period changes for WASP-18b are of the same order as those expected for tidal dissipation, even for relatively low values of the tidal dissipation parameter. The transit time variations caused by the Applegate mechanism are also of the correct magnitude and occur on time-scales such that they may be confused with variations caused by light-travel time effects due to the presence of a Jupiter-like second planet. Finally, we suggest that transiting exoplanet systems may provide a clean route (compared to binaries) to constraining the type of dynamo operating in the host star.