3 resultados para optimisation non linéaire


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30-60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Droplet digital PCR (ddPCR) can be used to detect low frequency mutations in oncogene-driven lung cancer. The range of KRAS point mutations observed in NSCLC necessitates a multiplex approach to efficient mutation detection in circulating DNA. Here we report the design and optimisation of three discriminatory ddPCR multiplex assays investigating nine different KRAS mutations using PrimePCR™ ddPCR™ Mutation Assays and the Bio-Rad QX100 system. Together these mutations account for 95% of the nucleotide changes found in KRAS in human cancer. Multiplex reactions were optimised on genomic DNA extracted from KRAS mutant cell lines and tested on DNA extracted from fixed tumour tissue from a cohort of lung cancer patients without prior knowledge of the specific KRAS genotype. The multiplex ddPCR assays had a limit of detection of better than 1 mutant KRAS molecule in 2,000 wild-type KRAS molecules, which compared favourably with a limit of detection of 1 in 50 for next generation sequencing and 1 in 10 for Sanger sequencing. Multiplex ddPCR assays thus provide a highly efficient methodology to identify KRAS mutations in lung adenocarcinoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to develop a multiplex loop-mediated isothermal amplification (LAMP) method capable of detecting Escherichia coli generally and verocytotoxigenic E. coli (VTEC) specifically in beef and bovine faeces. The LAMP assay developed was highly specific (100%) and able to distinguish between E. coli and VTEC based on the amplification of the phoA, and stx1 and/or stx2 genes, respectively. In the absence of an enrichment step, the limit of detection 50% (LOD50) of the LAMP assay was determined to be 2.83, 3.17 and 2.83-3.17 log CFU/g for E. coli with phoA, stx1 and stx2 genes, respectively, when artificially inoculated minced beef and bovine faeces were tested. The LAMP calibration curves generated with pure cultures, and spiked beef and faeces, suggested that the assay had good quantification capability. Validation of the assay, performed using retail beef and bovine faeces samples, demonstrated good correlation between counts obtained by the LAMP assay and by a conventional culture method, but suggested the possibility of false negative LAMP results for 12.5-14.7% of samples tested. The multiplex LAMP assay developed potentially represents a rapid alternative to culture for monitoring E.coli levels in beef or faeces and it would provide additional information on the presence of VTEC. However, some further optimisation is needed to improve detection sensitivity.