127 resultados para optimisation discrète
Resumo:
The need to integrate cost into the early product definition process as an engineering parameter is addressed. The application studied is a fuselage panel that is typical for commercial transport regional jets. Consequently, a semi-empirical numerical analysis using reference data was coupled to model the structural integrity of thin-walled structures with regard to material failure and buckling: skin, stringer, flexural, and interrivet. The optimization process focuses on direct operating cost (DOC) as a function of acquisition cost and fuel burn. It was found that the ratio of acquisition cost to fuel burn was typically 4:3 and that there was a 10% improvement in the DOC for the minimal DOC condition over the minimal weight condition because of the manufacturing cost saving from having a reduced number of larger-area stringers and a slightly thicker skin than that preferred by the minimal weight condition. Also note that the minimal manufacturing cost condition was slightly better than the minimal weight condition, which highlights the key finding: The traditional minimal weight condition is a dated and suboptimal approach to airframe structural design.
Resumo:
Up until now, aircraft surface smoothness requirements have been aerodynamically driven with tighter manufacturing tolerance to minimize drag, that is, the tighter the tolerance, the higher is the assembly cost in the process of manufacture. In the current status of commercial transport aircraft operation, it can be seen that the unit cost contributes to the aircraft direct operating cost considerably more than the contribution made by the cost of block fuel consumed for the mission profile. The need for a customer-driven design strategy to reduce direct operating cost by reducing aircraft cost through manufacturing tolerance relaxation at the wetted surface without unduly penalizing parasite drag is investigated. To investigate this, a preliminary study has been conducted at 11 key manufacturing features on the surface assembly of an isolated nacelle. In spite of differences in parts design and manufacture, the investigated areas associated with the assembly of nacelles are typical of generic patterns in the assembly of other components of aircraft. The study is to be followed up by similar studies extended to lifting surfaces and fuselage
Resumo:
Thermoforming processes generally employ sheet temperature monitoring as the primary means of process control. In this paper the development of an alternative system that monitors plug force is described. Tests using a prototype device have shown that the force record over a forming cycle creates a unique map of the process operation. Key process features such as the sheet modulus, sheet sag and the timing of the process stages may be readily observed, and the effects of changes in all of the major processing parameters are easily distinguished. Continuous, cycle-to-cycle tests show that the output is consistent and repeatable over a longer time frame, providing the opportunity for development of an on-line process control system. Further testing of the system is proposed.
Computer Simulation and Optimisation of an Intake Camshaft for a Restricted 600cc Four-Stroke Engine