2 resultados para optical parametric chirped-pulse amplification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a mechanism for testing the theory of collapse models such as continuous spontaneous localization (CSL) by examining the parametric heating rate of a trapped nanosphere. The random localizations of the center-of-mass for a given particle predicted by the CSL model can be understood as a stochastic force embodying a source of heating for the nanosphere. We show that by utilising a Paul trap to levitate the particle and optical cooling, it is possible to reduce environmental decoher- ence to such a level that CSL dominates the dynamics and contributes the main source of heating. We show that this approach allows measurements to be made on the timescale of seconds, and that the free parameter λcsl which characterises the model ought to be testable to values as low as 10^{−12} Hz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High order harmonics generated at relativistic intensities have long been recognized as a route to the most powerful extreme ultraviolet pulses. Reliably generating isolated attosecond pulses requires gating to only a single dominant optical cycle, but techniques developed for lower power lasers have not been readily transferable. We present a novel method to temporally gate attosecond pulse trains by combining noncollinear and polarization gating. This scheme uses a split beam configuration which allows pulse gating to be implemented at the high beam fluence typical of multi-TW to PW class laser systems. Scalings for the gate width demonstrate that isolated attosecond pulses are possible even for modest pulse durations achievable for existing and planned future ultrashort high-power laser systems. Experimental results demonstrating the spectral effects of temporal gating on harmonic spectra generated by a relativistic laser plasma interaction are shown.