3 resultados para object analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present BDDT, a task-parallel runtime system that dynamically discovers and resolves dependencies among parallel tasks. BDDT allows the programmer to specify detailed task footprints on any memory address range, multidimensional array tile or dynamic region. BDDT uses a block-based dependence analysis with arbitrary granularity. The analysis is applicable to existing C programs without having to restructure object or array allocation, and provides flexibility in array layouts and tile dimensions.
We evaluate BDDT using a representative set of benchmarks, and we compare it to SMPSs (the equivalent runtime system in StarSs) and OpenMP. BDDT performs comparable to or better than SMPSs and is able to cope with task granularity as much as one order of magnitude finer than SMPSs. Compared to OpenMP, BDDT performs up to 3.9× better for benchmarks that benefit from dynamic dependence analysis. BDDT provides additional data annotations to bypass dependence analysis. Using these annotations, BDDT outperforms OpenMP also in benchmarks where dependence analysis does not discover additional parallelism, thanks to a more efficient implementation of the runtime system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze four extreme AGN transients to explore the possibility that they are caused by rare, high-amplitude microlensing events. These previously unknown type-I AGN are located in the redshift range 0.6-1.1 and show changes of > 1.5 magnitudes in the g-band on a timescale of ~years. Multi-epoch optical spectroscopy, from the William Herschel Telescope, shows clear differential variability in the broad line fluxes with respect to the continuum changes and also evolution in the line profiles. In two cases a simple point-source, point-lens microlensing model provides an excellent match to the long-term variability seen in these objects. For both models the parameter constraints are consistent with the microlensing being due to an intervening stellar mass object but as yet there is no confirmation of the presence of an intervening galaxy. The models predict a peak amplification of 10.3/13.5 and an Einstein timescale of 7.5/10.8 years respectively. In one case the data also allow constraints on the size of the CIII] emitting region, with some simplifying assumptions, to to be ~1.0-6.5 light-days and a lower limit on the size of the MgII emitting region to be > 9 light-days (half-light radii). This CIII] radius is perhaps surprisingly small. In the remaining two objects there is spectroscopic evidence for an intervening absorber but the extra structure seen in the lightcurves requires a more complex lensing scenario to adequately explain.